scholarly journals Bioactive Components of the Traditionally used Mushroom Podaxis pistillaris

2006 ◽  
Vol 3 (1) ◽  
pp. 87-92 ◽  
Author(s):  
M. A. A. Al-Fatimi ◽  
W.-D. Jülich ◽  
R. Jansen ◽  
U. Lindequist

In the course of an ethnobotanical study on fungi used in Yemeni ethnomedicine the fungusPodaxis pistillaris(Podaxales, Podaxaceae, Basidiomycetes) was found to exhibit antibacterial activity againstStaphylococcus aureus,Micrococcus flavus,Bacillus subtilis,Proteus mirabilis,Serratia marcescensandEscherichia coli. In the culture medium ofP. pistillaristhree epidithiodiketopiperazines were identified by activity-guided isolation. Based on spectral data (NMR, ESI-MS and DCI-MS) their identity was established as epicorazine A (1), epicorazine B (2) and epicorazine C (3, antibiotic F 3822), which have not been reported as constituents ofP. pistillarispreviously. It is assumed that the identified compounds contribute to the antibacterial activity of the extract.

2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


2018 ◽  
Vol 42 (10) ◽  
pp. 512-514
Author(s):  
Rui-bo Xu ◽  
Xiao-tian Yang ◽  
Hai-nan Li ◽  
Peng-cheng Zhao ◽  
Jiao-jiao Li ◽  
...  

Two new bis-Schiff bases containing a piperazine ring, N,N‘-bis(4-chlorobenzylidene)- and N,N‘-bis(4-cyanobenzylidene)-1,4-bis(3-aminopropyl)piperazine, were prepared by the reaction of N,N‘-bis(3-aminopropyl)piperazine with 4-chloro- and 4-cyanobenzaldehyde, respectively. The dichloro compound was fully identified by X-ray crystallography and it exhibited good antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis.


2016 ◽  
Vol 8 (3) ◽  
pp. 333 ◽  
Author(s):  
Abdullahi Aliyu ◽  
Alkali BR ◽  
Yahaya MS ◽  
Garba A ◽  
Adeleye SA ◽  
...  

<p>The aqueous and ethanol extracts of the bark of<em> Khaya senegalensis</em> were screened for their phytochemical constituents and preliminary antibacterial activity against <em>Bacillus subtilis, Escherichia coli</em> and<em> Proteus mirabilis. </em>The minimum inhibitory concentration (MIC) of the plant on the tested organisms was determined using multiple tubes method.</p><p>Alkaloids, anthraquinones, glycosides, tannins and steroids were detected in both extracts.</p><p>The ethanol and aqueous extracts of the plant showed antibacterial activity against <em>B. subtilis and E. coli,</em> with the aqueous extracts having more activity than those of ethanol. However the growth of<em> P. mirabilis</em> was not inhibited by either of the extracts. The MIC value was determined to be 50 mg/ml for<em> B. subtilis </em>and<em> E. coli. </em>The results are suggestive of considerable antibacterial activity of<em> K. senegalensis </em>and may justify its use in the treatment of bacterial diseases by herbalists or traditional healers.</p>


2017 ◽  
Vol 901 ◽  
pp. 124-132
Author(s):  
Artania Adnin Tri Suma ◽  
Tutik Dwi Wahyuningsih ◽  
Deni Pranowo

Some novel N-phenylpyrazolines were synthesized and investigated for their antibacterial activitiy. Chalcones 2-4 which were prepared from acetophenone and veratraldehyde derivatives were reacted with phenylhydrazine to give N-phenylpyrazolines 5-7. All of the synthesized compounds were characterized using FTIR, GC-MS, and NMR spectrometers. Further, antibacterial activity of N-phenylpyrazolines were evaluated by agar well-diffusion method against Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Escherichia coli, and Shigella flexneri. The highest activity (highest inhibition zone) of compound 5 was 2.6 mm (at 1000 ppm) against B. subtillis, compound 6 was 7.25 mm (at 1000 ppm) against S. aureus, and compound 7 was 6.75 mm (at 500 ppm) against S. aureus. The results indicated that compound 6 and 7 exhibited promising antibacterial activity.


2021 ◽  
Vol 251 ◽  
pp. 02061
Author(s):  
Xiaojuan Gao ◽  
Xiaoshi Lu ◽  
Zifeng Wang ◽  
Guangpeng Liu ◽  
Xinjun Li

Taking monascin as the research object, monascin was extracted from red kojic rice by ethanol extraction and extracted with 60%, 70% and 80% ethanol respectively. Finally, it was concluded that when the concentration of ethanol was 70%, the extraction rate of monascin was the highest, reached 75.68%. The bacteriostatic experiments of monascin extract and monascin fermentation showed that it had strong inhibitory effect on Staphylococcus aureus and Bacillus subtilis, weak inhibitory ability on Escherichia coli and Aspergillus niger, and no obvious inhibitory effect on the growth of Saccharomyces cerevisiae.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Biswanath Chakraborty ◽  
Suchandra Chakraborty ◽  
Chandan Saha

The antibacterial activity of Murrayaquinone A (10), a naturally occurring carbazoloquinone alkaloid, and 6-methoxy-3,7-dimethyl-2,3-dihydro-1H-carbazole-1,4(9H)-dione (11), a synthetic carbazoloquinone, both obtained during the development of the synthesis of Carbazomycin G, having unique quinone moiety, was studied against Gram-positive (Bacillus subtilisandStaphylococcus aureus) and Gram-negative (Escherichia coliandPseudomonassp.) bacteria. Compound10showed antibacterial activities against both ofEscherichia coliandStaphylococcus aureuswhereas compound11indicated the activity againstStaphylococcus aureusonly. Both compounds10and11exhibited minimum inhibitory concentration (MIC) of 50 μg mL−1againstStaphylococcus aureus.


2020 ◽  
Vol 17 (2) ◽  
pp. 136-143
Author(s):  
Yan-Ling Tang ◽  
Yong-Kun Li ◽  
Min-Xin Li ◽  
Hui Gao ◽  
Xiao-Bi Yang ◽  
...  

Background: Infection is a global threat to human health, and there is an urgent need to develop new effective antibacterial drugs to treat bacterial infections. Objective: To study the antibacterial activity of piperazine substituted chalcone sulphonamides. Materials and Methods: A series of novel piperazine substituted chalcone sulphonamides have been prepared, and in vitro antibacterial activity against Staphylococcus aureus, Bacillus subtilis and Escherichia coli strains were evaluated. Results: The results showed that derivatives 6a, 6c and 6h displayed good antibacterial activity against Bacillus subtilis with MIC values of 4.0-8.0 mg/mL. Conclusion: Piperazine substituted chalcone sulphonamides may be used as potential antibacterial agents.


2011 ◽  
Vol 233-235 ◽  
pp. 2328-2331 ◽  
Author(s):  
Hui Juan Wang ◽  
Hao Chen ◽  
Guang Ting Han

In this study, the total flavone contents of Apocynum venetum extract and Apocynum venetum fiber extracts were evaluated. Their antibacterial activity was tested via testing the antibacterial effect of their aqueous, ethyl acetate and n-butyl alcohol extracts. The results were showed that both the materials extracts at the concentration of 100, 50mg/ml had significantly antibacterial activities against staphylococcus aureus, and had a few effect on bacillus subtilis, pseudomonadaceae, pseudomonas aeruginosa, staphylococcus epidermidis, escherichia coli and candida albicans.


2021 ◽  
Vol 37 (4) ◽  
pp. 797-804
Author(s):  
Dhanraj P. Kamble ◽  
Anil G. Shankarwar ◽  
Yogesh Mane ◽  
Radhakrishna Tigote ◽  
Yuvaraj P. Sarnikar ◽  
...  

The saccharine nucleus has long been recognized as a significant component in medicine. A series of Pseudo-saccharine amines derivatives (7a-j) were synthesized and examined for their antibacterial activity. After testing all compounds, the compounds 7b, 7f, 7g, 7i and 7j were found most effective against Escherichia coli, Streptococcus aureus and Bacillus subtilis strains. The MIC of the compound was found from 4.6 to 16.1 μM. Further, compound 7f and 7i exhibited excellent activity against E.coli and Bacillus subtilis with MIC value 4.6 and 4.7 μM respectively. The compound 7b and 7i was found active against all the three bacteria. The zone inhibition was observed at 10 μM against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at 0.9, 1.8, 3.9 respectively for 7b and 1.0, 1.8, and 2.0 cm respectively for 7i.


Author(s):  
Shaik Ammaji ◽  
Shaik Masthanamma

Chalcones are a class of natural products reported with a wide range of biological activities. Among them antibacterial is much promising and many potent chalcones have been emerged as useful antibacterial agents. In view of this, we synthesized 15 chalcones (3a-3o) containing both hydroxyl and chlorine substituents and studied them by using spectroscopic methods. The compounds were tested for antibacterial efficacy against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Proteus vulgaris, among other harmful microorganisms. The compounds have moderate to high antibacterial activity, among them heteroaromatic ring containing compounds  (3m, 3n, and 3o) elicited higher activity than the standard drug benzyl penicillin. The compound 3m having the pyridinyl compound displayed the maximum activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Proteus vulgaris, with zone of inhibition (in mm) values of 27.52±0.16, 28.85±0.11, 22.05±0.16, and 23.18±0.17, respectively. The synthesized compounds could be used as lead molecules in the development of novel antibacterial medicines.


Sign in / Sign up

Export Citation Format

Share Document