scholarly journals DOP86 An IFN-STAT1-MLKL axis drives programmed necrosis of Paneth cells in Crohn’s ileitis

2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S125-S126
Author(s):  
L HARTMANN ◽  
B Siegmund ◽  
C Weidinger ◽  
C Becker ◽  
M F Neurath ◽  
...  

Abstract Background Interferons (IFNs) are immune-modulatory cytokines expressed by epithelial and mucosal cells in response to viral and bacterial infection. Just recently, we discovered a correlation between IFN-λ expression and disease activity, including small intestinal inflammation and Paneth cell dysfunction, in human Crohn’s disease patients. On a molecular level, we uncovered that IFN-λ mediates epithelial cell death, in particular, Paneth cell death by a programmed necrosis, dependent on STAT1 activation and controlled by caspase-8. These results suggested that IFN-λ can be considered as a pathogenic cytokine in Crohn′s ileitis and should be considered as a new and promising target for future therapeutic intervention for this particular subtype of IBD. Our central question is now by which pathways interferon-regulated programmed necrosis of epithelial cells contributes to intestinal inflammation and how these mechanisms could be targeted for future therapeutic intervention. Methods We use a mouse model for Crohn’s Disease like inflammation and Paneth cell death that has a specific deletion of Caspase-8 in intestinal epithelial cells (Casp8∆IEC). We stimulate small intestinal organoids derived from Casp8∆IEC mice with IFNs in vitro and we overexpress IFN-λ in these mice in vivo by hydrodynamic tail vein injection of an IFN-λ expression vector. Furthermore, we use JAK-inhibitors to impede pharmacologically cell death pathways in the pathogenesis of intestinal inflammation in vitro and in vivo. Results We uncovered that gene expression of the cell death mediators Mlkl and Caspase-8 is dependent on IFN-λ-mediated JAK-STAT1 signalling. The non-specific pan JAK-inhibitor Tofacitinib is able to attenuate gene expression of Mlkl and Caspase-8 in vitro as well as in vivo. It prevents non-apoptotic as well as apoptotic cell death of small intestinal organoids stimulated with IFN-λ and is sufficient to prevent small intestinal tissue destruction in Casp8∆IEC mice challenged with IFN-λ. Additionally, we use the selective JAK1-inhibitor Filgotinib to limit the targeted JAK-STAT signalling pathways to only JAK1-STAT1 signalling and thus reduce side effects of the inhibitor on other signalling pathways. This had a similar effect as Tofacitinib suggesting that IFN controls MLKL-mediated cell death via JAK1. Conclusion In summary, our results indicate that targeting IFN-λ-mediated JAK-STAT1 signalling by the small-molecules Tofacitinib and Filgotinib impedes induction of Mlkl and Caspase-8-mediated cell death pathways. Therefore, JAK1 inhibitors such as Filgotinib might represent a promising novel therapy that may be sufficient to achieve efficacy particularly in Crohn′s ileitis patients who display elevated IFN-l serum levels.

Author(s):  
Hongli Zhou ◽  
Minyu Zhou ◽  
Yue Hu ◽  
Yanin Limpanon ◽  
Yubin Ma ◽  
...  

AbstractAngiostrongylus cantonensis (AC) can cause severe eosinophilic meningitis or encephalitis in non-permissive hosts accompanied by apoptosis and necroptosis of brain cells. However, the explicit underlying molecular basis of apoptosis and necroptosis upon AC infection has not yet been elucidated. To determine the specific pathways of apoptosis and necroptosis upon AC infection, gene set enrichment analysis (GSEA) and protein–protein interaction (PPI) analysis for gene expression microarray (accession number: GSE159486) of mouse brain infected by AC revealed that TNF-α likely played a central role in the apoptosis and necroptosis in the context of AC infection, which was further confirmed via an in vivo rescue assay after treating with TNF-α inhibitor. The signalling axes involved in apoptosis and necroptosis were investigated via immunoprecipitation and immunoblotting. Immunofluorescence was used to identify the specific cells that underwent apoptosis or necroptosis. The results showed that TNF-α induced apoptosis of astrocytes through the RIP1/FADD/Caspase-8 axis and induced necroptosis of neurons by the RIP3/MLKL signalling pathway. In addition, in vitro assay revealed that TNF-α secretion by microglia increased upon LSA stimulation and caused necroptosis of neurons. The present study provided the first evidence that TNF-α was secreted by microglia stimulated by AC infection, which caused cell death via parallel pathways of astrocyte apoptosis (mediated by the RIP1/FADD/caspase-8 axis) and neuron necroptosis (driven by the RIP3/MLKL complex). Our research comprehensively elucidated the mechanism of cell death after AC infection and provided new insight into targeting TNF-α signalling as a therapeutic strategy for CNS injury.


2002 ◽  
Vol 22 (15) ◽  
pp. 5419-5433 ◽  
Author(s):  
Susanne M. A. Lens ◽  
Takao Kataoka ◽  
Karen A. Fortner ◽  
Antoine Tinel ◽  
Isabel Ferrero ◽  
...  

ABSTRACT The caspase 8 inhibitor c-FLIPL can act in vitro as a molecular switch between cell death and growth signals transmitted by the death receptor Fas (CD95). To elucidate its function in vivo, transgenic mice were generated that overexpress c-FLIPL in the T-cell compartment (c-FLIPL Tg mice). As anticipated, FasL-induced apoptosis was inhibited in T cells from the c-FLIPL Tg mice. In contrast, activation-induced cell death of T cells in c-FLIPL Tg mice was unaffected, suggesting that this deletion process can proceed in the absence of active caspase 8. Accordingly, c-FLIPL Tg mice differed from Fas-deficient mice by showing no accumulation of B220+ CD4− CD8− T cells. However, stimulation of T lymphocytes with suboptimal doses of anti-CD3 or antigen revealed increased proliferative responses in T cells from c-FLIPL Tg mice. Thus, a major role of c-FLIPL in vivo is the modulation of T-cell proliferation by decreasing the T-cell receptor signaling threshold.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 330-330
Author(s):  
Antonia Cagnetta ◽  
Michele Cea ◽  
Chirag Acharya ◽  
Teresa Calimeri ◽  
Yu-Tzu Tai ◽  
...  

Abstract Abstract 330 Background: Our previous study demonstrated that inhibition of nicotinamide phosphoribosyltransferase (Nampt) acts by severely depleting intracellular NAD+ content and thus eliciting mitochondrial dysfunction and autophagic MM cell death. The proteasome inhibitor Bortezomib induces anti-MM activity by affecting a variety of signaling pathways. However, as with other agents, dose-limiting toxicities and the development of resistance limit its long-term utility. Here, we demonstrate that combining Nampt inhibitor and bortezomb induces synergistic anti-MM cell death both in vitro using MM cell lines or patient CD138+ MM cells and in vivo in a human plasmacytoma xenograft mouse model. Material and Methods: We utilized MM.1S, MM.1R, RPMI-8226, and U266 human MM cell lines, as well as purified tumor cells from patients relapsing after prior therapies. Cell viability and apoptosis assays were performed using Annexin V/PI staining. Intracellular NAD+ level and proteasome activity were quantified after 12, 24, and 48h exposure to single/combination drugs by specific assays. In vitro angiogenesis was assessed by Matrigel capillary-like tube structure formation assay. Immunoblot analysis was performed using antibodies to caspase-8, caspase-9, caspase-3, PARP, Bcl-2, and tubulin. CB-17 SCID male mice (n = 28; 7 mice/EA group) were subcutaneously inoculated with 5.0 × 106 MM.1S cells in 100 microliters of serum free RPMI-1640 medium. When tumors were measurable (3 weeks after MM cell injection), mice were treated for three weeks with vehicle alone, FK866 (30mg/kg 4 days weekly), Bortezomib (0.5 mg/kg twice weekly), or FK866 (30 mg/kg) plus Bortezomib (0.5 mg/kg). Statistical significance of differences observed in FK866, Bortezomib or combination-treated mice was determined using a Student t test. Isobologram analysis was performed using “CalcuSyn” software program. A combination index < 1.0 indicates synergism. Results/Discussion: Combining FK866 and Bortezomib induces synergistic anti-MM activity in vitro against MM cell lines (P<0.005, CI < 1) or patient CD138-positive MM cells (P< 0.004). FK866 plus Bortezomib-induced synergistic effect is associated with: 1)activation of caspase-8, caspase-9, caspase-3, and PARP; 2) improved intracellular NAD+ dissipation; 3) suppression of chymotrypsin-like, caspase-like, and trypsin-like proteolytic activities; 4) inhibition of NF-kappa B signaling; and 5) inhibition of angiogenesis. Importantly, the ectopic overexpression of Nampt rescues this observed synergistic effect; conversely, Nampt knockdown by RNAi significantly enhances the anti-MM effect of bortezomib. In the murine xenograft MM model, low dose combination FK866 (30 mg/kg) and Bortezomib (0.5 mg/kg) is well tolerated, significantly inhibits tumor growth (P < 0.001), and prolongs host survival (2–2.5 months in mice receiving combined drugs, P = 0.001). These findings demonstrate that intracellular NAD+ levels represent a major determinant in the ability of bortezomib to induce apoptosis of MM cells, providing the rationale for clinical protocols evaluating FK866 together with Bortezomib to improve patient outcome in MM. Disclosures: Munshi: Celgene: Consultancy; Millenium: Consultancy; Merck: Consultancy; Onyx: Consultancy.


2004 ◽  
Vol 24 (22) ◽  
pp. 9763-9770 ◽  
Author(s):  
Dong-Gyu Jo ◽  
Joon-Il Jun ◽  
Jae-Woong Chang ◽  
Yeon-Mi Hong ◽  
Sungmin Song ◽  
...  

ABSTRACT Apoptosis repressor with CARD (ARC) possesses the ability not only to block activation of caspase 8 but to modulate caspase-independent mitochondrial events associated with cell death. However, it is not known how ARC modulates both caspase-dependent and caspase-independent cell death. Here, we report that ARC is a Ca2+-dependent regulator of caspase 8 and cell death. We found that in Ca2+ overlay and Stains-all assays, ARC protein bound to Ca2+ through the C-terminal proline/glutamate-rich (P/E-rich) domain. ARC expression reduced not only cytosolic Ca2+ transients but also cytotoxic effects of thapsigargin, A23187, and ionomycin, for which the Ca2+-binding domain of ARC was indispensable. Conversely, direct interference of endogenous ARC synthesis by targeting ARC enhanced such Ca2+-mediated cell death. In addition, binding and immunoprecipitation analyses revealed that the protein-protein interaction between ARC and caspase 8 was decreased by the increase of Ca2+ concentration in vitro and by the treatment of HEK293 cells with thapsigargin in vivo. Caspase 8 activation was also required for the thapsigargin-induced cell death and suppressed by the ectopic expression of ARC. These results suggest that calcium binding mediates regulation of caspase 8 and cell death by ARC.


2013 ◽  
Vol 4 (3) ◽  
pp. 259-275 ◽  
Author(s):  
Michael J. Morgan ◽  
Zheng-gang Liu

AbstractProgrammed cell death is the process by which an individual cell in a multicellular organism commits cellular ‘suicide’ to provide a long-term benefit to the organism. Thus, programmed cell death is important for physiological processes such as development, cellular homeostasis, and immunity. Importantly, in this process, the cell is not eliminated in response to random events but in response to an intricate and genetically defined set of internal cellular molecular events or ‘program’. Although the apoptotic process is generally very well understood, programmed cell death that occurs with a necrotic-like phenotype has been much less studied, and it is only within the past few years that the necrotic program has begun to be elucidated. Originally, programmed necrosis was somewhat dismissed as a nonphysiological phenomenon that occurs in vitro. Recent in vivo studies, however, suggest that regulated necrosis is an authentic classification of cell death that is important in mammalian development and other physiological processes, and programmed necrosis is now considered a significant therapeutic target in major pathological processes as well. Although the RIP1-RIP3-dependent necrosome complex is recognized as being essential for the execution of many instances of programmed necrosis, other downstream and related necrotic molecules and pathways are now being characterized. One of the current challenges is understanding how and under what conditions these pathways are linked together.


Cartilage ◽  
2020 ◽  
pp. 194760352094122
Author(s):  
Carlo Alberto Paggi ◽  
Amel Dudakovic ◽  
Yao Fu ◽  
Catalina Galeano Garces ◽  
Mario Hevesi ◽  
...  

Objective Cartilage formation is stimulated in mixtures of chondrocytes and human adipose–derived mesenchymal stromal cells (MSCs) both in vitro and in vivo. During coculture, human MSCs perish. The goal of this study is to elucidate the mechanism by which adipose tissue–derived MSC cell death occurs in the presence of chondrocytes. Methods Human primary chondrocytes were cocultured with human MSCs derived from 3 donors. The cells were cultured in monoculture or coculture (20% chondrocytes and 80% MSCs) in pellets (200,000 cells/pellet) for 7 days in chondrocyte proliferation media in hypoxia (2% O2). RNA sequencing was performed to assess for differences in gene expression between monocultures or coculture. Immune fluorescence assays were performed to determine the presence of caspase-3, LC3B, and P62. Results RNA sequencing revealed significant upregulation of >90 genes in the 3 cocultures when compared with monocultures. STRING analysis showed interconnections between >50 of these genes. Remarkably, 75% of these genes play a role in cell death pathways such as apoptosis and autophagy. Immunofluorescence shows a clear upregulation of the autophagic machinery with no substantial activation of the apoptotic pathway. Conclusion In cocultures of human MSCs with primary chondrocytes, autophagy is involved in the disappearance of MSCs. We propose that this sacrificial cell death may contribute to the trophic effects of MSCs on cartilage formation.


2021 ◽  
Vol 118 (4) ◽  
pp. e2017432118
Author(s):  
Yalong Wang ◽  
Kaixin He ◽  
Baifa Sheng ◽  
Xuqiu Lei ◽  
Wanyin Tao ◽  
...  

RNA helicases play roles in various essential biological processes such as RNA splicing and editing. Recent in vitro studies show that RNA helicases are involved in immune responses toward viruses, serving as viral RNA sensors or immune signaling adaptors. However, there is still a lack of in vivo data to support the tissue- or cell-specific function of RNA helicases owing to the lethality of mice with complete knockout of RNA helicases; further, there is a lack of evidence about the antibacterial role of helicases. Here, we investigated the in vivo role of Dhx15 in intestinal antibacterial responses by generating mice that were intestinal epithelial cell (IEC)-specific deficient for Dhx15 (Dhx15 f/f Villin1-cre, Dhx15ΔIEC). These mice are susceptible to infection with enteric bacteria Citrobacter rodentium (C. rod), owing to impaired α-defensin production by Paneth cells. Moreover, mice with Paneth cell-specific depletion of Dhx15 (Dhx15 f/f Defensinα6-cre, Dhx15ΔPaneth) are more susceptible to DSS (dextran sodium sulfate)-induced colitis, which phenocopy Dhx15ΔIEC mice, due to the dysbiosis of the intestinal microbiota. In humans, reduced protein levels of Dhx15 are found in ulcerative colitis (UC) patients. Taken together, our findings identify a key regulator of Wnt-induced α-defensins in Paneth cells and offer insights into its role in the antimicrobial response as well as intestinal inflammation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Alessandra Araujo ◽  
Alexandra Safronova ◽  
Elise Burger ◽  
Américo López-Yglesias ◽  
Shilpi Giri ◽  
...  

Paneth cells constitutively produce antimicrobial peptides and growth factors that allow for intestinal homeostasis, host protection and intestinal stem cell replication. Paneth cells rely heavily on the glycolytic metabolic program, which is in part controlled by the kinase complex Mechanistic target of rapamycin (mTORC1). Yet, little is known about mTOR importance in Paneth cell integrity under steady state and inflammatory conditions. Our results demonstrate that IFN-γ, a crucial mediator of the intestinal inflammation, acts directly on murine Paneth cells to alter their mitochondrial integrity and membrane potential, resulting in an mTORC1-dependent cell death mechanism distinct from canonical cell death pathways including apoptosis, necroptosis, and pyroptosis. These results were established with the purified cytokine and a physiologically relevant common Th1-inducing human parasite Toxoplasma gondii. Given the crucial role for IFN-γ, which is a cytokine frequently associated with the development of inflammatory bowel disease (IBD) and compromised Paneth cell functions, the identified mechanisms underlying mTORC1-dependent Paneth cell death downstream of IFN-γ may provide promising novel approaches for treating intestinal inflammation.


2017 ◽  
Vol 114 (17) ◽  
pp. 4489-4494 ◽  
Author(s):  
Zhiyong Zhao ◽  
Lixue Cao ◽  
E. Albert Reece

Diabetes mellitus in early pregnancy increases the risk in infants of birth defects, such as neural tube defects (NTDs), known as diabetic embryopathy. NTDs are associated with hyperglycemia-induced protein misfolding and Caspase-8–induced programmed cell death. The present study shows that misfolded proteins are ubiquitinylated, suggesting that ubiquitin-proteasomal degradation is impaired. Misfolded proteins form aggregates containing ubiquitin-binding protein p62, suggesting that autophagic-lysosomal clearance is insufficient. Additionally, these aggregates contain the neurodegenerative disease-associated proteins α-Synuclein, Parkin, and Huntingtin (Htt). Aggregation of Htt may lead to formation of a death-inducing signaling complex of Hip1, Hippi, and Caspase-8. Treatment with chemical chaperones, such as sodium 4-phenylbutyrate (PBA), reduces protein aggregation in neural stem cells in vitro and in embryos in vivo. Furthermore, treatment with PBA in vivo decreases NTD rate in the embryos of diabetic mice, as well as Caspase-8 activation and cell death. Enhancing protein folding could be a potential interventional approach to preventing embryonic malformations in diabetic pregnancies.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2324
Author(s):  
Hemapriyadarshini Vadarevu ◽  
Ridhima Juneja ◽  
Zachary Lyles ◽  
Juan L. Vivero-Escoto

The use of nanoparticle-based materials to improve the efficacy of photodynamic therapy (PDT) to treat cancer has been a burgeoning field of research in recent years. Polysilsesquioxane (PSilQ) nanoparticles with remarkable features, such as high loading of photosensitizers, biodegradability, surface tunability, and biocompatibility, have been used for the treatment of cancer in vitro and in vivo using PDT. The PSilQ platform typically shows an enhanced PDT performance following a cell death mechanism similar to the parent photosensitizer. Ferroptosis is a new cell death mechanism recently associated with PDT that has not been investigated using PSilQ nanoparticles. Herein, we synthesized a protoporphyrin IX (PpIX)-based PSilQ platform (PpIX-PSilQ NPs) to study the cell death pathways, with special focus on ferroptosis, during PDT in vitro. Our data obtained from different assays that analyzed Annexin V binding, glutathione peroxidase activity, and lipid peroxidation demonstrate that the cell death in PDT using PpIX-PSilQ NPs is regulated by apoptosis and ferroptosis. These results can provide alternative approaches in designing PDT strategies to enhance therapeutic response in conditions stymied by apoptosis resistance.


Sign in / Sign up

Export Citation Format

Share Document