Forecasting using cross-section average–augmented time series regressions
Summary There is a large and growing body of literature concerned with forecasting time series variables by the use of factor-augmented regression models. The workhorse of this literature is a two-step approach in which the factors are first estimated by applying the principal components method to a large panel of variables, and the forecast regression is then estimated, conditional on the first-step factor estimates. Another stream of research that has attracted much attention is concerned with the use of cross-section averages as common factor estimates in interactive effects panel regression models. The main justification for this second development is the simplicity and good performance of the cross-section averages when compared with estimated principal component factors. In view of this, it is quite surprising that no one has yet considered the use of cross-section averages for forecasting. Indeed, given the purpose to forecast the conditional mean, the use of the cross-sectional average to estimate the factors is only natural. The present paper can be seen as a reaction to this. The purpose is to investigate the asymptotic and small-sample properties of forecasts based on cross-section average–augmented regressions. In contrast to most existing studies, the investigation is carried out while allowing the number of factors to be unknown.