Maize Infestation of Fall Armyworm (Lepidoptera: Noctuidae) Within Agro-Ecological Zones of Togo and Ghana in West Africa 3 Yr After Its Invasion

2020 ◽  
Vol 49 (3) ◽  
pp. 645-650 ◽  
Author(s):  
Djima Koffi ◽  
Komi Agboka ◽  
Delanyo Kokouvi Adenka ◽  
Michael Osae ◽  
Agbeko Kodjo Tounou ◽  
...  

Abstract The fall armyworm Spodoptera frugiperda (J. E. Smith) invaded several West African countries in 2016 causing severe injury to maize plants and economic damage. This study assesses variations in the occurrence of this species in different Agro-Ecological Zones (AEZs) in Togo and Ghana during the 3 yr following its discovery. The surveys were conducted on 120 farms in Togo and 94 farms in Ghana by collecting larvae from 200 maize plants per hectare. Infestation levels were 68.46% in 2016, 55.82% in 2017, and 17.76% in 2018. The number of larvae recorded per hectare and infestation levels were higher in Togo than in Ghana. The lowest number of collected larvae and infestation levels of S. frugiperda were in 2018, compared to the other 2 yr. Larvae per hectare and the infestation level varied regionally inside the two countries. The southern part of Togo (AEZ five) contained higher numbers of larvae and higher infestation levels during the 2 yr following the invasion of the pest. We concluded that infestation levels of S. frugiperda are much lower in 2018 than the two previous years and it is therefore necessary to determine the factors that affect the population dynamics of S. frugiperda in the field, which is a perquisite for developing management interventions.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254328
Author(s):  
Akindele Oluwole Ogunfunmilayo ◽  
Shakiru Adewale Kazeem ◽  
Joy Ejemen Idoko ◽  
Raphael Abiodun Adebayo ◽  
Elizabeth Yetunde Fayemi ◽  
...  

Fall armyworm (FAW; Spodoptera frugiperda), an exotic moth which recently invaded Africa, is a highly destructive pest of cereals especially maize a highly valued staple crop in Nigeria. The use of natural enemies such as predators or parasitoids for FAW control is more economically viable and environmentally safer than currently recommended synthetic insecticides. Natural enemies to combat the pest have not yet been reported in Nigeria. An exploration for the pests’ natural enemies was undertaken by collecting FAW eggs and larvae from maize fields. These were reared in the laboratory for emergence, identification and efficacy as natural enemies. This yielded Euplectrus laphygmae (Hymenoptera: Eulophidae); Telenomus remus (Hymenoptera: Platygastridae) and Trombidium sp. (Acari.: Trombidiidae). Cotesia or Apanteles spp. were inferred to occur since Stictopisthus sp. (Hym.: Ichneumonidae), a secondary parasitoid, that attacks cocoons of Microgasterinae (e.g. Cotesia, Apanteles etc.) also emerged. Species of yet-to-be identified predators were also observed in various niches of maize plants. A positive relationship was found between FAW instar and the number of E. laphygmae eggs/instar ranging, on average, from 1.5 on second instar to 5.5 on fourth instars hosts. Parasitism rate of T. remus on FAW eggs was 100%. Parasitic mite infestation resulted in increasing paleness, reduced feeding, growth and movement as well as death of FAW 1st instars. Thus, the occurrence of FAW natural enemies in Nigeria calls for advocacy campaign to incorporate their use into integrated pest management strategies that attract and allow natural enemies to thrive for FAW management.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Djima Koffi ◽  
Rosina Kyerematen ◽  
Vincent Y Eziah ◽  
Yaa Oguabi Osei-Mensah ◽  
Kwame Afreh-Nuamah ◽  
...  

Abstract Spodoptera frugiperda was considered an insect pest only in the Americas until its first report in African countries in 2016. In this study, farmers and agricultural officials in Ghana were interviewed on their perceptions and knowledge of the pest, on infestation and maize yield variations across years, and on management practices. Farms were inspected to determine the infestation level of 100 plants per hectare. Interviews revealed that farmers were familiar with the larval stages of this pest and noticed that the pest occurred throughout the year, but populations of S. frugiperda increased only during cropping seasons. Infestation levels reported by farmers in surveys were much lower in 2018 (30.38%) than in 2017 (80.92%). Farm inspections confirmed that infestation levels were much lower in 2018 (20.90%) than 2017 (73.70%). The belt formed by Guinea Savannah, Transitional Zone, and Semi-Deciduous Forest Agro-Ecological Zones (AEZs) recorded the highest infestations while the lowest were observed from the Sudan Savannah and Tropical Rain Forest AEZs. Insecticides were the most commonly used tactic to manage populations of this new pest. Maize yields increased across Ghana between 2013 and 2015 from 1.52 to 1.73 t/ha, decreased between 2015 and 2017 to 1.55 t/ha, and increased to 1.69 t/ha in 2018. The impact of fall armyworm injury to maize production is discussed.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1074
Author(s):  
Bonoukpoè Mawuko Sokame ◽  
Boaz Musyoka ◽  
Julius Obonyo ◽  
François Rebaudo ◽  
Elfatih M. Abdel-Rahman ◽  
...  

The interactions among insect communities influence the composition of pest complexes that attack crops and, in parallel, their natural enemies, which regulate their abundance. The lepidopteran stemborers have been the major maize pests in Kenya. Their population has been regulated by natural enemies, mostly parasitoids, some of which have been used for biological control. It is not known how a new exotic invasive species, such as the fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera, Noctuidae), may affect the abundance and parasitism of the resident stemborers. For this reason, pest and parasitism surveys have been conducted, before and after the FAW invaded Kenya, in maize fields in 40 localities across 6 agroecological zones (AEZs) during the maize-growing season, as well as at 3 different plant growth stages (pre-tasseling, reproductive, and senescence stages) in 2 elevations at mid-altitude, where all maize stemborer species used to occur together. Results indicated that the introduction of the FAW significantly correlated with the reduction of the abundance of the resident communities of maize stemborers and parasitoids in maize fields; moreover, the decrease of stemborer density after the arrival of FAW occurred mostly at both reproductive and senescent maize stages. It also suggests a possible displacement of stemborers by FAW elsewhere; for example, to other cereals. However, since this study was conducted only three years after the introduction of the FAW, further studies will need to be conducted to confirm such displacements.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Sharanabasappa S. Deshmukh ◽  
S. Kiran ◽  
Atanu Naskar ◽  
Palam Pradeep ◽  
C. M. Kalleshwaraswamy ◽  
...  

AbstractThe fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), has become a major threat in maize cultivation since its invasion to India in 2018. The humpbacked fly, Megaselia scalaris (Loew) (Diptera: Phoridae), was recorded as a laboratory parasitoid of FAW, for the first time in India. Initially, 30–40 maggots of M. (M) scalaris emerged out from the dead pre-pupa and pupa of laboratory-reared FAW. The fly laid up to 15 eggs on the outer surface of 6th instar larva or pre-pupa of the FAW. The incubation period was 1–2 days. The fly had 3 larval instars which lasted 3–4 days and a pupal period of 10–11 days. The adults survived for 6–7 days.


2013 ◽  
Vol 63 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Franklin M. Cunha ◽  
Valéria Wanderley-Teixeira ◽  
Jorge B. Torres ◽  
Álvaro A.C. Teixeira ◽  
Thiago J.S. Alves ◽  
...  

Despite the efficiency of transgenic plants expressing Bacillus thuringiensis (Bt) toxins as insecticides against several lepidopterans, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is one species that presents low susceptibility to most Bt crops. This study investigated the effects of the Cry1Ac toxin expressed by Bt cotton in the midgut of S. frugiperda and its effects on the humoral and cellular immune responses. Three hypotheses were proposed and tested with contributing factors for the natural tolerance of S. frugiperda: (i) midgut regenerative cells are activated by the Cry1Ac toxin, and thus renew the epithelial cells damaged by the protein, (ii) Cry1Ac increased production of nitric oxide or phenoloxidase in the hemolymph, and (iii) there are qualitative and quantitative variations in the hemocyte levels of S. frugiperda. Caterpillars were reared using Bt cotton (Acala 90B) and non-Bt isolines (Acala 90), from the first to the fourth instar. The Bt cotton promoted elongation of the epithelial cells in the midgut of S. frugiperda caterpillars. Hence, evidence only supported the hypothesised increase of phenoloxidase (ii) and qualitative and quantitative differences in hemocyte levels (iii) in insects that were fed with Bt and non-Bt cotton. These parameters seem to explain the low susceptibility of S. frugiperda to Cry1Ac toxin and they are a viable set of responses for the evaluation of other xenobiotic factors.


2019 ◽  
Vol 11 (4) ◽  
pp. 126
Author(s):  
Lauren M. Barcelos ◽  
Fabrício O. Fernandes ◽  
Caroline Lopes ◽  
Beatriz M. Emygdio ◽  
Ricardo Valgas ◽  
...  

Saccharine sorghum has been analyzed as a supplementary prime matter for ethanol production, especially during the sugarcane off-season period. However, it has proven to be highly susceptible to insect attacks during the cultivation cycle. The fall armyworm should be emphasized due to its voracity and high damage capacity enhanced by feeding-caused decrease in photosynthetic area. Current analysis studies the biology and determines the nutritional indexes of Spodoptera frugiperda in saccharine sorghum. Cultivars of saccharine sorghum BRS 506, BRS 509 and BRS 511were evaluated. Duration and survival of the egg, caterpillar, pre-pupal and pupal phases were determined, coupled to weight of pupae and caterpillar, life span, fecundity and pre-egg laying period. Although S. frugiperda completed its life cycle on cultivars BRS 506 and BRS 511, egg-laying and egg feasibility rates were low, whereas insects did not lay eggs on cultivar BRS 509. There was no significant difference in feeding intake by S. frugiperda among these three sorghum cultivars. Results suggest that saccharine sorghum is not a suitable host for S. frugiperda. Biological data reveal that the three saccharine sorghum cultivars are recommended for the grain production system since the number of specimens of the next generation is low or null.


2021 ◽  
Author(s):  
jiyingzi Wu ◽  
xianjia Li ◽  
ruiquan Hou ◽  
kunyu Zhao ◽  
yongqin Wang ◽  
...  

Abstract BACKGROUND: Since the invasion of the fall armyworm moth (Spodoptera frugiperda) in China in January 2019, damage to maize crops has gradually intensified, and chemical control has become the main control measure. This study aimed to examine methods of effective pest control while monitoring the environmental impact of pesticide use. The effectiveness of S. frugiperda pest control by foliar spraying and root irrigation of maize plants with acephate was determined, and the absorption, distribution, and dissipation of acephate and methamidophos by maize were studied.RESULTS: Field trials showed that acephate treatment at 6000 g.a.i ha-1 was the most effective for controlling S. frugiperda. Acephate and methamidophos were absorbed from the roots, transported upward, and concentrated in the leaves, particularly new leaves. The terminal residues of acephate and methamidophos in maize grains were below detectable levels at 60 days after treatment.CONCLUSIONS: The results demonstrate that acephate treatment via root irrigation can more effectively control the infestation of S. frugiperda in maize than acephate treatment via foliar spraying. The translocation and distribution of acephate and methamidophos by root irrigation were more uniform, and the holding efficiency was higher than those in foliar spraying, suggesting an extended period of control efficacy. This pest control method could be utilized to reduce pesticide residues while safely and efficiently controlling S. frugiperda infestation.


2008 ◽  
pp. 1409-1412
Author(s):  
E. S. Krafsur ◽  
R. D. Moon ◽  
R. Albajes ◽  
O. Alomar ◽  
Elisabetta Chiappini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document