scholarly journals Cardiopulmonary exercise testing in repaired tetralogy of Fallot: a valuable tool for pulmonary regurgitation severity assessment

2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
P Garcia Bras ◽  
L Sousa ◽  
T Mano ◽  
A Monteiro ◽  
T Rito ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction and purpose The optimal timing for pulmonary valve replacement (PVR) in asymptomatic patients with repaired tetralogy of Fallot (TOF) and pulmonary regurgitation (PR) remains uncertain but is often guided by imaging characterization of the right ventricle. As cardiopulmonary exercise testing (CPET) performance is an accessible prognostic indicator, we assessed which CPET parameters best correlate with pulmonary regurgitation severity to potentially improve identification of high-risk patients. Methods A retrospective chart review was done from 2009 to 2018 on adult patients with repaired TOF who underwent maximal effort cardiopulmonary exercise testing with cycle ergometry and with concurrent pulmonary function testing. Demographics, standard measures of CPET interpretation, and major cardiovascular outcomes were collected. Results Cardiopulmonary exercise testing was performed in 54 adult repaired TOF patients (59% male), with a mean follow-up of 60 ± 33 months. The mean age was 34 ± 9 years. 30 patients (56%) had severe pulmonary regurgitation and 26 patients (48%) were submitted to PVR, with a 0% mortality rate. PVR was performed a mean 28 ± 7 years after TOF repair surgery. There was moderate to severe right ventricular dysfunction in 11 patients (20%). 12 patients (22%) had a hospitalization for heart failure. Arrhythmic events occurred in 9 patients (17%), mainly atrial fibrillation or atrial flutter (67%). 2 patients (4%) received an implantable cardioverter-defibrillator for secondary prevention of sudden cardiac death. Peak VO2 consumption (pVO2) showed no statistically significant correlation with severity of pulmonary regurgitation (HR 0.26, 95% CI 0.879-1.036, p= 0.262) or PVR (HR 0.92, 95% CI 0.829-1.028, p = 0.914), while percent of predicted pVO2 significantly correlated with severity of pulmonary regurgitation (HR 0.95, 95% CI 0.918-0.993, p = 0.020) and PVR (HR 0.94, 95% CI 0.886-0.992, p = 0.025). VE/VCO2 slope was not a significant predictor of severity of pulmonary regurgitation (HR 1.03, 95% CI 0.929-1.130, p = 0.622) or PVR (HR 1.04, 95% CI 0.952-1.128, p = 0.414) or) and neither cardiorespiratory optimal point (HR 0.94, 95% CI 0.786-1.120, p = 0.480) nor maximum end-tidal carbon dioxide pressure (PETCO2) (HR 0.93, 95% CI 0.846-1.037, p = 0.213) correlated with severity of pulmonary regurgitation or PVR. Conclusion Percent of predicted peak VO2 had the highest predictive power of all CPET parameters analysed in adult repaired TOF patients. Preoperative CPET could be an accessible way to identify high-risk patients earlier for PVR and should therefore be included in the routine assessment of these patients.

2019 ◽  
Vol 21 (8) ◽  
pp. 906-913 ◽  
Author(s):  
Imran Rashid ◽  
Adil Mahmood ◽  
Tevfik F Ismail ◽  
Shamus O’Meagher ◽  
Shelby Kutty ◽  
...  

Abstract Aims The optimal timing for pulmonary valve replacement in asymptomatic patients with repaired Tetralogy of Fallot (rTOF) and pulmonary regurgitation remains uncertain but is often guided by increases in right ventricular (RV) end-diastolic volume. As cardiopulmonary exercise testing (CPET) performance is a strong prognostic indicator, we assessed which cardiovascular magnetic resonance (CMR) parameters correlate with reductions in exercise capacity to potentially improve identification of high-risk patients. Methods and results In all, 163 patients with rTOF (mean age 24.5 ± 10.2 years) who had previously undergone CMR and standardized CPET protocols were included. The indexed right and left ventricular end-diastolic volumes (RVEDVi, LVEDVi), right and left ventricular ejection fractions (RVEF, LVEF), indexed RV stroke volume (RVSVi), and pulmonary regurgitant fraction (PRF) were quantified by CMR and correlated with CPET-determined peak oxygen consumption (VO2) or peak work. On univariable analysis, there was no significant correlation between RVEDVi and PRF with peak VO2 or peak work (% Jones-predicted). In contrast, RVEF and RVSVi had significant correlations with both peak VO2 and peak work that remained significant on multivariable analysis. For a previously established prognostic peak VO2 threshold of <27 mL/kg/min, receiver-operating characteristic curve analysis demonstrated a Harrell’s c of 0.70 for RVEF (95% confidence interval 0.61–0.79) with a sensitivity of 88% for RVEF <40%. Conclusion In rTOF, CMR indices of RV systolic function are better predictors of CPET performance than RV size. An RVEF <40% may be useful to identify prognostically significant reductions in exercise capacity in patients with varying degrees of RV dilatation.


2021 ◽  
pp. 1-9
Author(s):  
Richard J. Dobson ◽  
Nitish Ramparsad ◽  
Niki L. Walker ◽  
Alex McConnachie ◽  
Mark H. D. Danton

Abstract Background: The adult population of repaired tetralogy of Fallot is increasing and at risk of pre-mature death and arrhythmia. This study evaluates risk factors for adverse outcome and the effect of pulmonary valve replacement within a national cohort. Methods: A retrospective cohort study of 341 adult repaired tetralogy of Fallot (16–72 years) managed through a single national service was undertaken incorporating over 1200 patient-years of follow-up. Demographics, cardiopulmonary exercise testing, cardiac magnetic resonance, reintervention (including pulmonary valve replacement), and clinical events were analysed. The influence of these parameters on a primary outcome (death or arrhythmia) was evaluated. Results: Compared with an age-/gender-matched population, patients experienced a reduced survival, particularly males over 55 years (standardised mortality ratio : 6.12, 95% CI: 1.64–15.66, p = 0.004). Cox proportional hazards modelling identified increased indexed right ventricle (RV) end-diastolic volume (hazard ratio (HR): 2.86, 95% CI: 1.4–5.85, p = 0.004) and female gender (HR (male): 0.37, 95% CI: 0.14–0.98, p = 0.045) to be predictors significantly associated with the primary outcome. Pulmonary valve replacement undertaken at indexed RV end-diastolic volume = 145 ml/m2 reduced RV volumes and QRS duration but did not improve cardiopulmonary exercise testing nor NYHA class. Pulmonary valve replacement during cohort period was associated with increased risk of primary outcome (HR: 2.82, 95% CI: 1.36–5.86, p = 0.005). Conclusions: Although the majority of adult tetralogy of Fallot were asymptomatic in NYHA 1, cardiopulmonary exercise testing revealed important deficits. Tetralogy of Fallot survival was reduced compared to the general population. Female gender and increasing RV end-diastolic volume predicted adverse events. Pulmonary valve replacement reduced RV volumes and QRS duration but did not improve primary outcome.


Respiration ◽  
2021 ◽  
pp. 369-377
Author(s):  
Michael Westhoff ◽  
Patric Litterst ◽  
Ralf Ewert

Background: Combined pulmonary fibrosis and emphysema (CPFE) is a distinct entity among fibrosing lung diseases with a high risk for lung cancer and pulmonary hypertension (PH). Notably, concomitant PH was identified as a negative prognostic indicator that could help with early diagnosis to provide important information regarding prognosis. Objectives: The current study aimed to determine whether cardiopulmonary exercise testing (CPET) can be helpful in differentiating patients having CPFE with and without PH. Methods: Patients diagnosed with CPFE in 2 German cities (Hemer and Greifswald) over a period of 10 years were included herein. CPET parameters, such as peak oxygen uptake (peak VO2), functional dead space ventilation (VDf/VT), alveolar-arterial oxygen difference (AaDO2), arterial-end-tidal CO2 difference [P(a-ET)CO2] at peak exercise, and the minute ventilation-carbon dioxide production relationship (VE/VCO2 slope), were compared between patients with and without PH. Results: A total of 41 patients with CPET (22 with PH, 19 without PH) were analyzed. Right heart catheterization was performed in 15 of 41 patients without clinically relevant complications. Significant differences in peak VO2 (861 ± 190 vs. 1,397 ± 439 mL), VO2/kg body weight/min (10.8 ± 2.6 vs. 17.4 ± 5.2 mL), peak AaDO2 (72.3 ± 7.3 vs. 46.3 ± 14.2 mm Hg), VE/VCO2 slope (70.1 ± 31.5 vs. 39.6 ± 9.6), and peak P(a-ET)tCO2 (13.9 ± 3.5 vs. 8.1 ± 3.6 mm Hg) were observed between patients with and without PH (p < 0.001). Patients with PH had significantly higher VDf/VT at rest, VT1, and at peak exercise (65.6 ± 16.8% vs. 47.2 ± 11.6%; p < 0.001) than those without PH. A cutoff value of 44 for VE/VCO2 slope had a sensitivity and specificity of 94.7 and 72.7%, while a cutoff value of 11 mm Hg for P(a-ET)CO2 in combination with peak AaDO2 >60 mm Hg had a specificity and sensitivity of 95.5 and 84.2%, respectively. Combining peak AaDO2 >60 mm Hg with peak VO2/body weight/min <16.5 mL/kg/min provided a sensitivity and specificity of 100 and 95.5%, respectively. Conclusion: This study provided initial data on CPET among patients having CPFE with and without PH. CPET can help noninvasively detect PH and identify patients at risk. AaDO2 at peak exercise, VE/VCO2 slope, peak P(a-ET)CO2, and peak VO2 were parameters that had high sensitivity and, when combined, high specificity.


CHEST Journal ◽  
1994 ◽  
Vol 105 (5) ◽  
pp. 1617 ◽  
Author(s):  
James W. Adams ◽  
Patrick B. Hazard

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura Jones ◽  
Laura Tan ◽  
Suzanne Carey-Jones ◽  
Nathan Riddell ◽  
Richard Davies ◽  
...  

Abstract Background Consumer wrist-worn wearable activity monitors are widely available, low cost and are able to provide a direct measurement of several markers of physical activity. Despite this, there is limited data on their use in perioperative risk prediction. We explored whether these wearables could accurately approximate metrics (anaerobic threshold, peak oxygen uptake and peak work) derived using formalised cardiopulmonary exercise testing (CPET) in patients undergoing high-risk surgery. Methods Patients scheduled for major elective intra-abdominal surgery and undergoing CPET were included. Physical activity levels were estimated through direct measures (step count, floors climbed and total distance travelled) obtained through continuous wear of a wrist worn activity monitor (Garmin Vivosmart HR+) for 7 days prior to surgery and self-report through completion of the short International Physical Activity Questionnaire (IPAQ). Correlations and receiver operating characteristic (ROC) curve analysis explored the relationships between parameters provided by CPET and physical activity. Device selection Our choice of consumer wearable device was made to maximise feasibility outcomes for this study. The Garmin Vivosmart HR+ had the longest battery life and best waterproof characteristics of the available low-cost devices. Results Of 55 patients invited to participate, 49 (mean age 65.3 ± 13.6 years; 32 males) were enrolled; 37 provided complete wearable data for analyses and 36 patients provided full IPAQ data. Floors climbed, total steps and total travelled as measured by the wearable device all showed moderate correlation with CPET parameters of peak oxygen uptake (peak VO2) (R = 0.57 (CI 0.29–0.76), R = 0.59 (CI 0.31–0.77) and R = 0.62 (CI 0.35–0.79) respectively), anaerobic threshold (R = 0.37 (CI 0.01–0.64), R = 0.39 (CI 0.04–0.66) and R = 0.42 (CI 0.07–0.68) respectively) and peak work (R = 0.56 (CI 0.27–0.75), R = 0.48 (CI 0.17–0.70) and R = 0.50 (CI 0.2–0.72) respectively). Receiver operator curve (ROC) analysis for direct and self-reported measures of 7-day physical activity could accurately approximate the ventilatory equivalent for carbon dioxide (VE/VCO2) and the anaerobic threshold. The area under these curves was 0.89 for VE/VCO2 and 0.91 for the anaerobic threshold. For peak VO2 and peak work, models fitted using just the wearable data were 0.93 for peak VO2 and 1.00 for peak work. Conclusions Data recorded by the wearable device was able to consistently approximate CPET results, both with and without the addition of patient reported activity measures via IPAQ scores. This highlights the potential utility of wearable devices in formal assessment of physical functioning and suggests they could play a larger role in pre-operative risk assessment. Ethics This study entitled “uSing wearable TEchnology to Predict perioperative high-riSk patient outcomes (STEPS)” gained favourable ethical opinion on 24 January 2017 from the Welsh Research Ethics Committee 3 reference number 17/WA/0006. It was registered on ClinicalTrials.gov with identifier NCT03328039.


2013 ◽  
Vol 95 (2) ◽  
pp. 125-130 ◽  
Author(s):  
LH Moyes ◽  
CJ McCaffer ◽  
RC Carter ◽  
GM Fullarton ◽  
CK Mackay ◽  
...  

Introduction An anaerobic threshold (AT) of <11ml/min/kg can identify patients at high risk of cardiopulmonary complications after major surgery. The aim of this study was to assess the value of cardiopulmonary exercise testing (CPET) in predicting cardiopulmonary complications in high risk patients undergoing oesophagogastric cancer resection. Methods Between March 2008 and October 2010, 108 patients (83 men, 25 women) with a median age of 66 years (range: 38–84 years) underwent CPET before potentially curative resections for oesophagogastric cancers. Measured CPET variables included AT and maximum oxygen uptake at peak exercise (VO2 peak). Outcome measures were length of high dependency unit stay, length of hospital stay, unplanned intensive care unit (ICU) admission, and postoperative morbidity and mortality. Results The mean AT and VO2 peak were 10.8ml/min/kg (standard deviation [SD]: 2.8ml/min/kg, range: 4.6–19.3ml/min/kg) and 15.2ml/min/kg (SD: 5.3ml/min/kg, range: 5.4–33.3ml/min/kg) respectively; 57 patients (55%) had an AT of <11ml/min/ kg and 26 (12%) had an AT of <9ml/min/kg. Postoperative complications occurred in 57 patients (29 cardiopulmonary [28%] and 28 non-cardiopulmonary [27%]). Four patients (4%) died in hospital and 21 (20%) required an unplanned ICU admission. Cardiopulmonary complications occurred in 42% of patients with an AT of <9ml/min/kg compared with 29% of patients with an AT of ≥9ml/min/kg but <11ml/min/kg and 20% of patients with an AT of ≥11ml/min/kg (p=0.04). There was a trend that those with an AT of <11ml/min/kg and a low VO2 peak had a higher rate of unplanned ICU admission. Conclusions This study has shown a correlation between AT and the development of cardiopulmonary complications although the discriminatory ability was low.


Sign in / Sign up

Export Citation Format

Share Document