scholarly journals The neural G protein Gαo tagged with GFP at an internal loop is functional in C. elegans

Author(s):  
Santosh Kumar ◽  
Andrew C Olson ◽  
Michael R Koelle

Abstract Gαo is the alpha subunit of the major heterotrimeric G protein in neurons and mediates signaling by every known neurotransmitter, yet the signaling mechanisms activated by Gαo remain to be fully elucidated. Genetic analysis in Caenorhabditis elegans has shown that Gαo signaling inhibits neuronal activity and neurotransmitter release, but studies of the molecular mechanisms underlying these effects have been limited by lack of tools to complement genetic studies with other experimental approaches. Here we demonstrate that inserting the green fluorescent protein (GFP) into an internal loop of the Gαo protein results in a tagged protein that is functional in vivo and that facilitates cell biological and biochemical studies of Gαo. Transgenic expression of Gαo-GFP rescues the defects caused by loss of endogenous Gαo in assays of egg laying and locomotion behaviors. Defects in body morphology caused by loss of Gαo are also rescued by Gαo-GFP. The Gαo-GFP protein is localized to the plasma membrane of neurons, mimicking localization of endogenous Gαo. Using GFP as an epitope tag, Gαo-GFP can be immunoprecipitated from C. elegans lysates to purify Gαo protein complexes. The Gαo-GFP transgene reported in this study enables studies involving in vivo localization and biochemical purification of Gαo to complement the already well-developed genetic analysis of Gαo signaling.

2021 ◽  
Author(s):  
Santosh Kumar ◽  
Andrew C. Olson ◽  
Michael R. Koelle

AbstractGαo is the alpha subunit of the major heterotrimeric G protein in neurons and mediates signaling by every known neurotransmitter, yet the signaling mechanisms activated by Gαo remain to be fully elucidated. Genetic analysis in Caenorhabditis elegans has shown that Gαo signaling inhibits neuronal activity and neurotransmitter release, but studies of the molecular mechanisms underlying these effects have been limited by lack of tools to complement genetic studies with other experimental approaches. Here we demonstrate that inserting the green fluorescent protein (GFP) into an internal loop of the Gαo protein results in a tagged protein that is functional in vivo and that facilitates cell biological and biochemical studies of Gαo. Transgenic expression of Gαo-GFP rescues the defects caused by loss of endogenous Gαo in assays of egg laying and locomotion behaviors. Defects in body morphology caused by loss of Gαo are also rescued by Gαo-GFP. The Gαo-GFP protein is localized to the plasma membrane of neurons, mimicking localization of endogenous Gαo. Using GFP as an epitope tag, Gαo-GFP can be immunoprecipitated from C. elegans lysates to purify Gαo protein complexes. The Gαo-GFP transgene reported in this study enables studies involving in vivo localization and biochemical purification of Gαo to complement the already well-developed genetic analysis of Gαo signaling.


Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 3919-3928 ◽  
Author(s):  
H.M. Chamberlin ◽  
R.E. Palmer ◽  
A.P. Newman ◽  
P.W. Sternberg ◽  
D.L. Baillie ◽  
...  

Mutations in the C. elegans gene egl-38 result in a discrete set of defects in developmental pattern formation. In the developing egg-laying system of egl-38 mutant hermaphrodites, the identity of four uterine cells is disrupted and they adopt the fate of their neighbor cells. Likewise, the identity of two rectal epithelial cells in the male tail is disrupted and one of these cells adopts the fate of its neighbor cell. Genetic analysis suggests that the egl-38 functions in the tail and the egg-laying system are partially separable, as different egl-38 mutations can preferentially disrupt the different functions. We have cloned egl-38 and shown that it is a member of the PAX family of genes, which encode transcription factors implicated in a variety of developmental patterning events. The predicted EGL-38 protein is most similar to the mammalian class of proteins that includes PAX2, PAX5 and PAX8. The sequence of egl-38 mutant DNA indicates that the tissue-preferential defects of egl-38 mutations result from substitutions in the DNA-binding paired domain of the EGL-38 protein. egl-38 thus provides the first molecular genetic insight into two specific patterning events that occur during C. elegans development and also provides the opportunity to investigate the in vivo functions of this class of PAX proteins with single cell resolution.


2021 ◽  
pp. 1-9
Author(s):  
Dayana Torres Valladares ◽  
Sirisha Kudumala ◽  
Murad Hossain ◽  
Lucia Carvelli

Amphetamine is a potent psychostimulant also used to treat attention deficit/hyperactivity disorder and narcolepsy. In vivo and in vitro data have demonstrated that amphetamine increases the amount of extra synaptic dopamine by both inhibiting reuptake and promoting efflux of dopamine through the dopamine transporter. Previous studies have shown that chronic use of amphetamine causes tolerance to the drug. Thus, since the molecular mechanisms underlying tolerance to amphetamine are still unknown, an animal model to identify the neurochemical mechanisms associated with drug tolerance is greatly needed. Here we took advantage of a unique behavior caused by amphetamine in <i>Caenorhabditis elegans</i> to investigate whether this simple, but powerful, genetic model develops tolerance following repeated exposure to amphetamine. We found that at least 3 treatments with 0.5 mM amphetamine were necessary to see a reduction in the amphetamine-induced behavior and, thus, to promote tolerance. Moreover, we found that, after intervals of 60/90 minutes between treatments, animals were more likely to exhibit tolerance than animals that underwent 10-minute intervals between treatments. Taken together, our results show that <i>C. elegans</i> is a suitable system to study tolerance to drugs of abuse such as amphetamines.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Nicolas J. Delalez ◽  
Richard M. Berry ◽  
Judith P. Armitage

ABSTRACTSome proteins in biological complexes exchange with pools of free proteins while the complex is functioning. Evidence is emerging that protein exchange can be part of an adaptive mechanism. The bacterial flagellar motor is one of the most complex biological machines and is an ideal model system to study protein dynamics in large multimeric complexes. Recent studies showed that the copy number of FliM in the switch complex and the fraction of FliM that exchanges vary with the direction of flagellar rotation. Here, we investigated the stoichiometry and turnover of another switch complex component, FliN, labeled with the fluorescent protein CyPet, inEscherichia coli. Our results confirm that,in vivo, FliM and FliN form a complex with stoichiometry of 1:4 and function as a unit. We estimated that wild-type motors contained 120 ± 26 FliN molecules. Motors that rotated only clockwise (CW) or counterclockwise (CCW) contained 114 ± 17 and 144 ± 26 FliN molecules, respectively. The ratio of CCW-to-CW FliN copy numbers was 1.26, very close to that of 1.29 reported previously for FliM. We also measured the exchange of FliN molecules, which had a time scale and dependence upon rotation direction similar to those of FliM, consistent with an exchange of FliM-FliN as a unit. Our work confirms the highly dynamic nature of multimeric protein complexes and indicates that, under physiological conditions, these machines might not be the stable, complete structures suggested by averaged fixed methodologies but, rather, incomplete rings that can respond and adapt to changing environments.IMPORTANCEThe flagellum is one of the most complex structures in a bacterial cell, with the core motor proteins conserved across species. Evidence is now emerging that turnover of some of these motor proteins depends on motor activity, suggesting that turnover is important for function. The switch complex transmits the chemosensory signal to the rotor, and we show, by using single-cell measurement, that both the copy number and the fraction of exchanging molecules vary with the rotational bias of the rotor. When the motor is locked in counterclockwise rotation, the copy number is similar to that determined by averaged, fixed methodologies, but when locked in a clockwise direction, the number is much lower, suggesting that that the switch complex ring is incomplete. Our results suggest that motor remodeling is an important component in tuning responses and adaptation at the motor.


2008 ◽  
Vol 294 (2) ◽  
pp. H699-H707 ◽  
Author(s):  
Ellen Steward Pentz ◽  
Maria Luisa S. Sequeira Lopez ◽  
Magali Cordaillat ◽  
R. Ariel Gomez

The renin-angiotensin system (RAS) regulates blood pressure and fluid-electrolyte homeostasis. A key step in the RAS cascade is the regulation of renin synthesis and release by the kidney. We and others have shown that a major mechanism to control renin availability is the regulation of the number of cells capable of making renin. The kidney possesses a pool of cells, mainly in its vasculature but also in the glomeruli, capable of switching from smooth muscle to endocrine renin-producing cells when homeostasis is threatened. The molecular mechanisms governing the ability of these cells to turn the renin phenotype on and off have been very difficult to study in vivo. We, therefore, developed an in vitro model in which cells of the renin lineage are labeled with cyan fluorescent protein and cells actively making renin mRNA are labeled with yellow fluorescent protein. The model allowed us to determine that it is possible to culture cells of the renin lineage for numerous passages and that the memory to express the renin gene is maintained in culture and can be reenacted by cAMP and chromatin remodeling (histone H4 acetylation) at the cAMP-responsive element in the renin gene.


2020 ◽  
Author(s):  
Sabrina Dietz ◽  
Miguel Vasconcelos Almeida ◽  
Emily Nischwitz ◽  
Jan Schreier ◽  
Nikenza Viceconte ◽  
...  

AbstractTelomeres are bound by dedicated protein complexes, like shelterin in mammals, which protect telomeres from DNA damage. In the nematode Caenorhabditis elegans, a comprehensive understanding of the proteins interacting with the telomere sequence is lacking. Here, we harnessed a quantitative proteomics approach to screen for proteins binding to C. elegans telomeres, and identified TEBP-1 and TEBP-2, two paralogs that associate to telomeres in vitro and in vivo. TEBP-1 and TEBP-2 are expressed in the germline and during embryogenesis. tebp-1 and tebp-2 mutants display strikingly distinct phenotypes: tebp-1 mutants have longer telomeres than wild-type animals, while tebp-2 mutants display shorter telomeres and a mortal germline, a phenotype characterized by transgenerational germline deterioration. Notably, tebp-1; tebp-2 double mutant animals have synthetic sterility, with germlines showing signs of severe mitotic and meiotic arrest. TEBP-1 and TEBP-2 form a telomeric complex with the known single-stranded telomere-binding proteins POT-1, POT-2, and MRT-1. Furthermore, we find that POT-1 bridges the double- stranded binders TEBP-1 and TEBP-2, with the single-stranded binders POT-2 and MRT-1. These results describe the first telomere-binding complex in C. elegans, with TEBP-1 and TEBP-2, two double-stranded telomere binders required for fertility and that mediate opposite telomere dynamics.


2002 ◽  
Vol 115 (14) ◽  
pp. 2881-2891
Author(s):  
Monika A. Jedrusik ◽  
Stefan Vogt ◽  
Peter Claus ◽  
Ekkehard Schulze

The histone H1 complement of Caenorhabditis elegans contains a single unusual protein, H1.X. Although H1.X possesses the globular domain and the canonical three-domain structure of linker histones, the amino acid composition of H1.X is distinctly different from conventional linker histones in both terminal domains. We have characterized H1.X in C. elegans by antibody labeling, green fluorescent protein fusion protein expression and RNA interference. Unlike normal linker histones, H1.X is a cytoplasmic as well as a nuclear protein and is not associated with chromosomes. H1.X is most prominently expressed in the marginal cells of the pharynx and is associated with a peculiar cytoplasmic cytoskeletal structure therein, the tonofilaments. Additionally H1.X::GFP is expressed in the cytoplasm of body and vulva muscle cells, neurons, excretory cells and in the nucleoli of embryonic blastomeres and adult gut cells. RNA interference with H1.X results in uncoordinated and egg laying defective animals, as well as in a longitudinally enlarged pharynx. These phenotypes indicate a cytoplasmic role of H1.X in muscle growth and muscle function.


2002 ◽  
Vol 115 (5) ◽  
pp. 923-929 ◽  
Author(s):  
Yosef Gruenbaum ◽  
Kenneth K. Lee ◽  
Jun Liu ◽  
Merav Cohen ◽  
Katherine L. Wilson

Emerin belongs to the LEM-domain family of nuclear membrane proteins, which are conserved in metazoans from C. elegans to humans. Loss of emerin in humans causes the X-linked form of Emery-Dreifuss muscular dystrophy(EDMD), but the disease mechanism is not understood. We have begun to address the function of emerin in C. elegans, a genetically tractable nematode. The emerin gene (emr-1) is conserved in C. elegans. We detect Ce-emerin protein in the nuclear envelopes of all cell types except sperm, and find that Ce-emerin co-immunoprecipitates with Ce-lamin from embryo lysates. We show for the first time in any organism that nuclear lamins are essential for the nuclear envelope localization of emerin during early development. We further show that four other types of nuclear envelope proteins, including fellow LEM-domain protein Ce-MAN1, as well as Ce-lamin, UNC-84 and nucleoporins do not depend on Ce-emerin for their localization. This result suggests that emerin is not essential to organize or localize the only lamin (B-type) expressed in C. elegans. We also analyzed the RNAi phenotype resulting from the loss of emerin function in C. elegans under laboratory growth conditions, and found no detectable phenotype throughout development. We propose that C. elegans is an appropriate system in which to study the molecular mechanisms of emerin function in vivo.


2019 ◽  
Vol 26 (2) ◽  
pp. 151-159
Author(s):  
Maria Sanz-Puig ◽  
Alejandra Arana-Lozano ◽  
M Consuelo Pina-Pérez ◽  
Pablo Fernández ◽  
Antonio Martínez ◽  
...  

Resistant bacteria to antimicrobials are increasingly emerging in medical, food industry and livestock environments. The present research work assesses the capability of Salmonella enterica var Typhimurium to become adapted under the exposure to a natural cauliflower antimicrobial by-product infusion in consecutive repeated exposure cycles. Caenorhabditis elegans was proposed as in vivo host-test organism to compare possible changes in the virulent pattern of the different rounds treated S. enterica var Typhimurium and untreated bacterial cells. According to the obtained results, S. enterica var Typhimurium was able to generate resistance against a repeated exposure to cauliflower by-product infusion 5% (w/v), increasing the resistance with the number of exposed repetitions. Meanwhile, at the first exposure, cauliflower by-product infusion was effective in reducing S. enterica var Typhimurium (≈1 log10 cycle), and S. enterica var Typhimurium became resistant to this natural antimicrobial after the second and third treatment-round and was able to grow (≈1 log10 cycle). In spite of the increased resistance observed for repeatedly treated bacteria, the present study reveals no changes on C. elegans infection effects between resistant and untreated S. enterica var Typhimurium, according to phenotypic parameters evaluation (lifespan duration and egg-laying).


2002 ◽  
Vol 22 (10) ◽  
pp. 3549-3561 ◽  
Author(s):  
Ray-Chang Wu ◽  
Jun Qin ◽  
Yoshihiro Hashimoto ◽  
Jiemin Wong ◽  
Jianming Xu ◽  
...  

ABSTRACT In the past few years, many nuclear receptor coactivators have been identified and shown to be an integral part of receptor action. The most frequently studied of these coactivators are members of the steroid receptor coactivator (SRC) family, SRC-1, TIF2/GRIP1/SRC-2, and pCIP/ACTR/AIB-1/RAC-3/TRAM-1/SRC-3. In this report, we describe the biochemical purification of SRC-1 and SRC-3 protein complexes and the subsequent identification of their associated proteins by mass spectrometry. Surprisingly, we found association of SRC-3, but not SRC-1, with the IκB kinase (IKK). IKK is known to be responsible for the degradation of IκB and the subsequent activation of NF-κB. Since NF-κB plays a key role in host immunity and inflammatory responses, we therefore investigated the significance of the SRC-3-IKK complex. We demonstrated that SRC-3 was able to enhance NF-κB-mediated gene expression in concert with IKK. In addition, we showed that SRC-3 was phosphorylated by the IKK complex in vitro. Furthermore, elevated SRC-3 phosphorylation in vivo and translocation of SRC-3 from cytoplasm to nucleus in response to tumor necrosis factor alpha occurred in cells, suggesting control of subcellular localization of SRC-3 by phosphorylation. Finally, the hypothesis that SRC-3 is involved in NF-κB-mediated gene expression is further supported by the reduced expression of interferon regulatory factor 1, a well-known NF-κB target gene, in the spleens of SRC-3 null mutant mice. Taken together, our results not only reveal the IKK-mediated phosphorylation of SRC-3 to be a regulated event that plays an important role but also substantiate the role of SRC-3 in multiple signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document