scholarly journals Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses.

Genetics ◽  
1991 ◽  
Vol 127 (1) ◽  
pp. 87-101 ◽  
Author(s):  
B Valent ◽  
L Farrall ◽  
F G Chumley

Abstract We have identified genes for pathogenicity toward rice (Oryza sativa) and genes for virulence toward specific rice cultivars in the plant pathogenic fungus Magnaporthe grisea. A genetic cross was conducted between the weeping lovegrass (Eragrostis curvula) pathogen 4091-5-8, a highly fertile, hermaphroditic laboratory strain, and the rice pathogen O-135, a poorly fertile, female-sterile field isolate that infects weeping lovegrass as well as rice. A six-generation backcrossing scheme was then undertaken with the rice pathogen as the recurrent parent. One goal of these crosses was to generate rice pathogenic progeny with the high fertility characteristic of strain 4091-5-8, which would permit rigorous genetic analysis of rice pathogens. Therefore, progeny strains to be used as parents for backcross generations were chosen only on the basis of fertility. The ratios of pathogenic to nonpathogenic (and virulent to avirulent) progeny through the backcross generations suggested that the starting parent strains differ in two types of genes that control the ability to infect rice. First, they differ by polygenic factors that determine the extent of lesion development achieved by those progeny that infect rice. These genes do not appear to play a role in infection of weeping lovegrass because both parents and all progeny infect weeping lovegrass. Second, the parents differ by simple Mendelian determinants, "avirulence genes," that govern virulence toward specific rice cultivars in all-or-none fashion. Several crosses confirm the segregation of three unlinked avirulence genes, Avr 1-CO39, Avr 1-M201 and Avr1-YAMO, alleles of which determine avirulence on rice cultivars CO39, M201, and Yashiro-mochi, respectively. Interestingly, avirulence alleles of Avr1-CO39, Avr1-M201 and Avr1-YAMO were inherited from the parent strain 4091-5-8, which is a nonpathogen of rice. Middle repetitive DNA sequences ("MGR sequences"), present in approximately 40-50 copies in the genome of the rice pathogen parent, and in very low copy number in the genome of the nonpathogen of rice, were used as physical markers to monitor restoration of the rice pathogen genetic background during introgression of fertility. The introgression of highest levels of fertility into the most successful rice pathogen progeny was incomplete by the sixth generation, perhaps a consequence of genetic linkage between genes for fertility and genes for rice pathogenicity. One chromosomal DNA segment with MGR sequence homology appeared to be linked to the gene Avr1-CO39. Finally, many of the crosses described in this paper exhibited a characteristic common to many crosses involving M. grisea rice pathogen field isolates.(ABSTRACT TRUNCATED AT 400 WORDS)

2007 ◽  
Vol 6 (3) ◽  
pp. 546-554 ◽  
Author(s):  
Isabelle Fudal ◽  
Jérôme Collemare ◽  
Heidi U. Böhnert ◽  
Delphine Melayah ◽  
Marc-Henri Lebrun

ABSTRACT Magnaporthe grisea is responsible for a devastating fungal disease of rice called blast. Current control of this disease relies on resistant rice cultivars that recognize M. grisea signals corresponding to specific secreted proteins encoded by avirulence genes. The M. grisea ACE1 avirulence gene differs from others, since it controls the biosynthesis of a secondary metabolite likely recognized by rice cultivars carrying the Pi33 resistance gene. Using a transcriptional fusion between ACE1 promoter and eGFP, we showed that ACE1 is only expressed in appressoria during fungal penetration into rice and barley leaves, onion skin, and cellophane membranes. ACE1 is almost not expressed in appressoria differentiated on Teflon and Mylar artificial membranes. ACE1 expression is not induced by cellophane and plant cell wall components, demonstrating that it does not require typical host plant compounds. Cyclic AMP (cAMP) signaling mutants ΔcpkA and Δmac1 sum1-99 and tetraspanin mutant Δpls1::hph differentiate melanized appressoria with normal turgor but are unable to penetrate host plant leaves. ACE1 is normally expressed in these mutants, suggesting that it does not require cAMP signaling or a successful penetration event. ACE1 is not expressed in appressoria of the buf1::hph mutant defective for melanin biosynthesis and appressorial turgor. The addition of hyperosmotic solutes to buf1::hph appressoria restores appressorial development and ACE1 expression. Treatments of young wild-type appressoria with actin and tubulin inhibitors reduce both fungal penetration and ACE1 expression. These experiments suggest that ACE1 appressorium-specific expression does not depend on host plant signals but is connected to the onset of appressorium-mediated penetration.


2005 ◽  
Vol 360 (1460) ◽  
pp. 1597-1603 ◽  
Author(s):  
Maria De Iorio ◽  
Eric de Silva ◽  
Michael P.H Stumpf

The variation of the recombination rate along chromosomal DNA is one of the important determinants of the patterns of linkage disequilibrium. A number of inferential methods have been developed which estimate the recombination rate and its variation from population genetic data. The majority of these methods are based on modelling the genealogical process underlying a sample of DNA sequences and thus explicitly include a model of the demographic process. Here we propose a different inferential procedure based on a previously introduced framework where recombination is modelled as a point process along a DNA sequence. The approach infers regions containing putative hotspots based on the inferred minimum number of recombination events; it thus depends only indirectly on the underlying population demography. A Poisson point process model with local rates is then used to infer patterns of recombination rate estimation in a fully Bayesian framework. We illustrate this new approach by applying it to several population genetic datasets, including a region with an experimentally confirmed recombination hotspot.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 227 ◽  
Author(s):  
Eduardo Gorab

Polynucleotide chains obeying Watson-Crick pairing are apt to form non-canonical complexes such as triple-helical nucleic acids. From early characterization in vitro, their occurrence in vivo has been strengthened by increasing evidence, although most remain circumstantial particularly for triplex DNA. Here, different approaches were employed to specify triple-stranded DNA sequences in the Drosophila melanogaster chromosomes. Antibodies to triplex nucleic acids, previously characterized, bind to centromeric regions of mitotic chromosomes and also to the polytene section 59E of mutant strains carrying the brown dominant allele, indicating that AAGAG tandem satellite repeats are triplex-forming sequences. The satellite probe hybridized to AAGAG-containing regions omitting chromosomal DNA denaturation, as expected, for the intra-molecular triplex DNA formation model in which single-stranded DNA coexists with triplexes. In addition, Thiazole Orange, previously described as capable of reproducing results obtained by antibodies to triple-helical DNA, binds to AAGAG repeats in situ thus validating both detection methods. Unusual phenotype and nuclear structure exhibited by Drosophila correlate with the non-canonical conformation of tandem satellite arrays. From the approaches that lead to the identification of triple-helical DNA in chromosomes, facilities particularly provided by Thiazole Orange use may broaden the investigation on the occurrence of triplex DNA in eukaryotic genomes.


1998 ◽  
Vol 66 (9) ◽  
pp. 4123-4129 ◽  
Author(s):  
Philip J. Hill ◽  
Alan Cockayne ◽  
Patrick Landers ◽  
Julie A. Morrissey ◽  
Catriona M. Sims ◽  
...  

ABSTRACT In Staphylococcus epidermidis and Staphylococcus aureus, a number of cell wall- and cytoplasmic membrane-associated lipoproteins are induced in response to iron starvation. To gain insights into the molecular basis of iron-dependent gene regulation in the staphylococci, we sequenced the DNA upstream of the 3-kb S. epidermidis sitABC operon, which Northern blot analysis indicates is transcriptionally regulated by the growth medium iron content. We identified two DNA sequences which are homologous to elements of the Corynebacterium diphtheriae DtxR regulon, which controls, in response to iron stress, for example, production of diphtheria toxin, siderophore, and a heme oxygenase. Upstream of thesitABC operon and divergently transcribed lies a 645-bp open reading frame (ORF), which codes for a polypeptide of approximately 25 kDa with homology to the DtxR family of metal-dependent repressor proteins. This ORF has been designated SirR (staphylococcal iron regulator repressor). Within thesitABC promoter/operator region, we also located a region of dyad symmetry overlapping the transcriptional start ofsitABC which shows high homology to the DtxR operator consensus sequence, suggesting that this region, termed the Sir box, is the SirR-binding site. The SirR protein was overexpressed, purified, and used in DNA mobility shift assays; SirR retarded the migration of a synthetic oligonucleotide based on the Sir box in a metal (Fe2+ or Mn2+)-dependent manner, providing confirmatory evidence that this motif is the SirR-binding site. Furthermore, Southern blot analysis of staphylococcal chromosomal DNA with the synthetic Sir box as a probe confirmed that there are at least five Sir boxes in the S. epidermidis genome and at least three in the genome of S. aureus, suggesting that SirR controls the expression of multiple target genes. Using a monospecific polyclonal antibody raised against SirR to probe Western blots of whole-cell lysates of S. aureus, S. carnosus,S. epidermidis, S. hominis, S. cohnii, S. lugdunensis, and S. haemolyticus, we identified an approximately 25-kDa cross-reactive protein in each of the staphylococcal species examined. Taken together, these data suggest that SirR functions as a divalent metal cation-dependent transcriptional repressor which is widespread among the staphylococci.


1987 ◽  
Vol 7 (9) ◽  
pp. 3297-3305
Author(s):  
B G Turgeon ◽  
R C Garber ◽  
O C Yoder

A novel strategy was used to develop a transformation system for the plant pathogenic fungus Cochliobolus heterostrophus. Sequences capable of driving the expression of a gene conferring resistance to the antibiotic hygromycin B in C. heterostrophus were selected from a library of genomic DNA fragments and used, with the selectable marker, as the basis for transformation. The library of random 0.5- to 2.0-kilobase-pair fragments of C. heterostrophus genomic DNA was inserted at the 5' end of a truncated, promoterless Escherichia coli hygromycin B phosphotransferase gene (hygB) whose product confers resistance to hygromycin B. C. heterostrophus protoplasts were transformed with the library and selected for resistance. Resistant colonies arose at low frequency. Each colony contained a transformation vector stably integrated into chromosomal DNA. When the transforming DNA was recovered from the genome and introduced into C. heterostrophus, resistant colonies appeared at higher frequency. We determined the sequences of two of the C. heterostrophus DNA fragments which had been inserted at the 5' end of hygB in the promoter library and found that both made translational fusions with hygB. One of the two fusions apparently adds 65 and the other at least 86 amino acids to the N-terminus of the hygB product. Plasmids containing hygB-C. heterostrophus promoter fusions can be used unaltered to drive hygB expression in several other filamentous ascomycetes. This approach to achieving transformation may have general utility, especially for organisms with relatively undeveloped genetics.


2005 ◽  
Vol 71 (8) ◽  
pp. 4388-4399 ◽  
Author(s):  
Cesar A. Morales ◽  
Steffen Porwollik ◽  
Jonathan G. Frye ◽  
Hailu Kinde ◽  
Michael McClelland ◽  
...  

ABSTRACT The genotype of Salmonella enterica serovar Enteritidis was correlated with the phenotype using DNA-DNA microarray hybridization, ribotyping, and Phenotype MicroArray analysis to compare three strains that differed in colony morphology and phage type. No DNA hybridization differences were found between two phage type 13A (PT13A) strains that varied in biofilm formation; however, the ribotype patterns were different. Both PT13A strains had DNA sequences similar to that of bacteriophage Fels2, whereas the PT4 genome to which they were compared, as well as a PT4 field isolate, had a DNA sequence with some similarity to the bacteriophage ST64b sequence. Phenotype MicroArray analysis indicated that the two PT13A strains and the PT4 field isolate had similar respiratory activity profiles at 37°C. However, the wild-type S. enterica serovar Enteritidis PT13A strain grew significantly better in 20% more of the 1,920 conditions tested when it was assayed at 25°C than the biofilm-forming PT13A strain grew. Statistical analysis of the respiratory activity suggested that S. enterica serovar Enteritidis PT4 had a temperature-influenced dimorphic metabolism which at 25°C somewhat resembled the profile of the biofilm-forming PT13A strain and that at 37°C the metabolism was nearly identical to that of the wild-type PT13A strain. Although it is possible that lysogenic bacteriophage alter the balance of phage types on a farm either by lytic competition or by altering the metabolic processes of the host cell in subtle ways, the different physiologies of the S. enterica serovar Enteritidis strains correlated most closely with minor, rather than major, genomic changes. These results strongly suggest that the pandemic of egg-associated human salmonellosis that came into prominence in the 1980s is primarily an example of bacterial adaptive radiation that affects the safety of the food supply.


2005 ◽  
Vol 95 (7) ◽  
pp. 768-772 ◽  
Author(s):  
N. Yasuda ◽  
M. T. Noguchi ◽  
Y. Fujita

A rice isolate of Magnaporthe grisea collected from China was avirulent on rice cvs. Hattan 3 and 13 other Japanese rice cultivars. The rice cv. Hattan 3 is susceptible to almost all Japanese blast fungus isolates from rice. The genetic basis of avirulence in the Chinese isolate on Japanese rice cultivars was studied using a cross between the Chinese isolate and a laboratory isolate. The segregation of avirulence or virulence was studied in 185 progeny from the cross, and monogenic control was demonstrated for avirulence to the 14 rice cultivars. The resistance gene that corresponds to the avirulence gene (Avr-Hattan 3) is thought to be located at the Pik locus. Resistance and susceptibility in response to the Chinese isolate in F3 lines of a cross of resistant and susceptible rice cultivars were very similar to the Pik tester isolate, Ken54-20. Random amplified polymorphic DNA markers and restriction fragment length polymorphism markers from genetic maps of the fungus were used to construct a partial genetic map of Avr-Hattan 3. We obtained several flanking markers and one co-segregated marker of Avr-Hattan 3 in the 144 mapping population.


2004 ◽  
Vol 85 (1) ◽  
pp. 45-48 ◽  
Author(s):  
Linda M. Kohn

Astract Phylogenetic or genealogical interpretation of DNA sequence data from multiple genomic regions has become the gold standard for species delimitation and population genetics. Precise species concepts can inform quarantine decisions but are likely to reflect evolutionary events too far in the past to impact disease management. On the other hand, multilocus approaches at the population level can identify patterns of endemism or migration directly associated with episodes of disease, including host shifts and associated changes in determinants of pathogenicity and avirulence. We used the genome database of Magnaporthe grisea to frame a comparative, multilocus genomics approach from which we demonstrate a single origin for rice infecting genotypes with concomitant loss of sex in pandemic clonal lineages, and patterns of gain and loss of avirulence genes. In the Sclerotinia sclerotiorum pathosystem, we identified significant associations of multilocus haplotypes with specific pathogen populations in North America. Following the introduction of a new crop, endemic pathogen genotypes and newly evolved migrant genotypes caused novel, early-season symptoms.


Sign in / Sign up

Export Citation Format

Share Document