scholarly journals quick-to-court, a Drosophila Mutant With Elevated Levels of Sexual Behavior, Is Defective in a Predicted Coiled-Coil Protein

Genetics ◽  
2000 ◽  
Vol 154 (4) ◽  
pp. 1627-1637
Author(s):  
Peter Gaines ◽  
Laurie Tompkins ◽  
Craig T Woodard ◽  
John R Carlson

Abstract Remarkably little is known about the molecular mechanisms that drive sexual behavior. We have identified a new gene, quick-to-court (qtc), whose mutations cause males to show high levels of male-male courtship. qtc males also show a novel phenotype: when placed in the presence of a virgin female, they begin courtship abnormally quickly. qtc mutations are striking in their specificity, in that many aspects of male sexual behavior are normal. We have cloned the qtc gene and found that it encodes a predicted coiled-coil protein and is expressed in the olfactory organs, central nervous system, and male reproductive tract.

Reproduction ◽  
2013 ◽  
Vol 146 (1) ◽  
pp. R21-R35 ◽  
Author(s):  
Robert Sullivan ◽  
Fabrice Saez

Mammalian spermatozoa are unique cells in many ways, and the acquisition of their main function, i.e. fertilization capacity, is a multistep process starting in the male gonad and ending near the female egg for the few cells reaching this point. Owing to the unique character of this cell, the molecular pathways necessary to achieve its maturation also show some specific characteristics. One of the most striking specificities of the spermatozoon is that its DNA is highly compacted after the replacement of histones by protamines, making the classical processes of transcription and translation impossible. The sperm cells are thus totally dependent on their extracellular environment for their protection against oxidative stress, for example, or for the molecular changes occurring during the transit of the epididymis; the first organ in which post-testicular maturation takes place. The molecular mechanisms underlying sperm maturation are still largely unknown, but it has been shown in the past three decades that extracellular vesicles secreted by the male reproductive tract are involved in this process. This review will examine the roles played by two types of naturally occurring extracellular vesicles, epididymosomes and prostasomes, secreted by the epididymis and the prostate respectively. We will also describe how the use of artificial vesicles, liposomes, contributed to the study of male reproductive physiology.


2001 ◽  
Vol 12 (2) ◽  
pp. 309-321 ◽  
Author(s):  
Kara L. Cerveny ◽  
J. Michael McCaffery ◽  
Robert E. Jensen

Mitochondria are dynamic organelles that undergo frequent division and fusion, but the molecular mechanisms of these two events are not well understood. Dnm1p, a mitochondria-associated, dynamin-related GTPase was previously shown to mediate mitochondrial fission. Recently, a genome-wide yeast two-hybrid screen identified an uncharacterized protein that interacts with Dnm1p. Cells disrupted in this new gene, which we call NET2, contain a single mitochondrion that consists of a network formed by interconnected tubules, similar to the phenotype of dnm1Δ cells. NET2 encodes a mitochondria-associated protein with a predicted coiled-coil region and six WD-40 repeats. Immunofluorescence microscopy indicates that Net2p is located in distinct, dot-like structures along the mitochondrial surface, many of which colocalize with the Dnm1 protein. Fluorescence and immunoelectron microscopy shows that Dnm1p and Net2p preferentially colocalize at constriction sites along mitochondrial tubules. Our results suggest that Net2p is a new component of the mitochondrial division machinery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammad Ishraq Zafar ◽  
Jiangyu Yu ◽  
Honggang Li

Emerging viral infections continuously pose a threat to human wellbeing. Several RNA viruses have managed to establish access to the male reproductive tract and persist in human semen. The sexual transmission of the virus is of critical public concern. The epidemiological inferences are essential to understand its complexity, particularly the probability of viral transmission from asymptomatic patients or those in the incubation period or from the patient who was previously infected and now fully recovered. From the clinical perspective, negative impacts in the male reproductive tract associated with RNA virus infection have been described, including orchitis, epididymitis, impaired spermatogenesis, and a decrease in sperm quality, which can affect male fertility at different time intervals. The disruption of anatomical barriers due to inflammatory responses might enable the viral invasion into the testis, and the immune privilege status of testes might facilitate a sustained persistence of the virus in the semen. In this review, the current knowledge about other RNA viruses that affect male reproductive health provides the framework to discuss the impact of the SARS-CoV-2 pandemic. The molecular mechanisms, sexual transmission, and viral impacts for mumps, HIV, Zika, and Ebola viruses are explored. We discuss the currently available information on the impact of SARS-CoV-2 and its sequelae in the male reproductive tract, particularly regarding presence in semen, its impact on sexual organs, and sperm quality. To date, no sexual transmission of SARS-CoV-2 has been reported, whereas the identification of viral particles in semen remains conflicting. In the purview of the earlier conducted analyses, it is essential to investigate further the long-term health impacts of SARS-CoV-2 on the male reproductive tract.


Author(s):  
Nikolaos Sofikitis ◽  
Aris Kaltsas ◽  
Fotios Dimitriadis ◽  
Jens Rassweiler ◽  
Nikolaos Grivas ◽  
...  

The therapeutic range of cyclic nucleotide phosphodiesterase 5 inhibitors (PDE5) inhibitors is getting wider in the last years. This review study focuses on the potential employment of PDE5 inhibitors as an adjunct tool for the therapeutic management of male infertility. The literature tends to suggest a beneficial effect of PDE5 inhibitors on Leydig and Sertoli cells secretory function. It also appears that PDE5 inhibitors play a role in the regulation of the contractility of the testicular tunica albuginea and the epididymis. Moreover scientific data suggest that PDE5 inhibitors enhance the prostatic secretory function leading to an improvement in sperm motility. Other studies additionally demonstrate a role of PDE5 inhibitors in the regulation of sperm capacitation process. Placebo-controlled, randomized, blind studies are necessary to unambiguously incorporate PDE5 inhibitors as an adjunct tool for the pharmaceutical treatment of semen disorders and male infertility.


1984 ◽  
Vol 32 (6) ◽  
pp. 721 ◽  
Author(s):  
H Marsh ◽  
GE Heinsohn ◽  
TD Glover

The anatomy and histology of the male reproductive tract of the dugong (Dugong dugon) is described. Each testis and its adjacent epididymis lie immediately caudal to the corresponding kidney. The seminal vesicles are large but there is no discrete prostate gland and the bulbo-urethral glands are also diffuse. Both qualitative and quantitative examination of the testes and epididymides of 59 males whose ages have been estimated from tusk dentinal growth layer counts indicate that the male dugong does not produce spermatozoa continuously, despite the absence of a distinct breeding season. Individual dugongs were observed with testes at all stages between complete quiescence and full spermatogenesis, and only 10 of the 40 mature males had fully spermatogenic testes and epididymides packed with spermatozoa. Androgenic and spermatogenic activity of the testes appeared to be in phase, but the testicular histology of some old males suggested that they may have been sterile for long periods.


2009 ◽  
Vol 189 ◽  
pp. S145
Author(s):  
Betzabet Quintanilla-Vega ◽  
Patricia Espíritu-Gordillo ◽  
Yuliana Palacios-Gil ◽  
Margarita Guaderrama-Díaz ◽  
María de Jesús Solís-Heredia ◽  
...  

2019 ◽  
Vol 116 (37) ◽  
pp. 18498-18506 ◽  
Author(s):  
Yoshitaka Fujihara ◽  
Taichi Noda ◽  
Kiyonori Kobayashi ◽  
Asami Oji ◽  
Sumire Kobayashi ◽  
...  

CRISPR/Cas9-mediated genome editing technology enables researchers to efficiently generate and analyze genetically modified animals. We have taken advantage of this game-changing technology to uncover essential factors for fertility. In this study, we generated knockouts (KOs) of multiple male reproductive organ-specific genes and performed phenotypic screening of these null mutant mice to attempt to identify proteins essential for male fertility. We focused on making large deletions (dels) within 2 gene clusters encoding cystatin (CST) and prostate and testis expressed (PATE) proteins and individual gene mutations in 2 other gene families encoding glycerophosphodiester phosphodiesterase domain (GDPD) containing and lymphocyte antigen 6 (Ly6)/Plaur domain (LYPD) containing proteins. These gene families were chosen because many of the genes demonstrate male reproductive tract-specific expression. AlthoughGdpd1andGdpd4mutant mice were fertile, disruptions ofCstandPategene clusters andLypd4resulted in male sterility or severe fertility defects secondary to impaired sperm migration through the oviduct. While absence of the epididymal protein families CST and PATE affect the localization of the sperm membrane protein A disintegrin and metallopeptidase domain 3 (ADAM3), the sperm acrosomal membrane protein LYPD4 regulates sperm fertilizing ability via an ADAM3-independent pathway. Thus, use of CRISPR/Cas9 technologies has allowed us to quickly rule in and rule out proteins required for male fertility and expand our list of male-specific proteins that function in sperm migration through the oviduct.


Sign in / Sign up

Export Citation Format

Share Document