scholarly journals Regulatory Elements Required for Development of Caenorhabditis elegans Hermaphrodites Are Conserved in the tra-2 Homologue of C. remanei, a Male/Female Sister Species

Genetics ◽  
2000 ◽  
Vol 155 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Eric S Haag ◽  
Judith Kimble

Abstract The Caenorhabditis elegans hermaphrodite is essentially a female that produces sperm. In C. elegans, tra-2 promotes female fates and must be repressed to achieve hermaphrodite spermatogenesis. In an effort to learn how mating systems evolve, we have cloned tra-2 from C. remanei, the closest gonochoristic relative of C. elegans. We found its structure to be similar to that of Ce-tra-2 but its sequence to be divergent. RNA interference demonstrates that Cr-tra-2 promotes female fates. Two sites of tra-2 regulation are required for the onset of hermaphrodite spermatogenesis in C. elegans. One, the MX region of TRA-2, is as well conserved in C. remanei as it is in C. briggsae (another male/hermaphrodite species), suggesting that this control is not unique to hermaphrodites. Another, the DRE/TGE element of the tra-2 3′ UTR, was not detected by sequence analysis. However, gel-shift assays demonstrate that a factor in C. remanei can bind specifically to the Cr-tra-2 3′ UTR, suggesting that this translational control is also conserved. We propose that both controls are general and do not constitute a novel “switch” that enables sexual mosaicism in hermaphrodites. However, subtle quantitative or qualitative differences in their employment may underlie differences in mating system seen in Caenorhabditis.

Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 639-654
Author(s):  
David Rudel ◽  
Judith Kimble

Abstract The Caenorhabditis elegans (Ce) glp-1 gene encodes a Notch-like receptor. We have cloned glp-1 from C. briggsae (Cb) and C. remanei (Cr), two Caenorhabditis species that have diverged from C. elegans by roughly 20–40 million years. By sequence analysis, we find that the Cb-GLP-1 and Cr-GLP-1 proteins have retained the same motif architecture as Ce-GLP-1, including number of domains. In addition, two regions (CC-linker and regions flanking the ANK repeats) are as highly conserved as regions previously recognized as essential for signaling (e.g., ANK repeats). Phylogenetic analysis of glp-1 sequences suggests a C. briggsae/C. remanei clade with C. elegans as a sister taxon. Using RNAi to test biological functions, we find that Ce-glp-1, Cb-glp-1, and Cr-glp-1 are all required for proliferation of germline stem cells and for specifying blastomere fates in the embryo. In addition, certain biological roles of Cb-glp-1, e.g., in the vulva, have diverged from those of Ce-glp-1 and Cr-glp-1, suggesting a change in either regulation or function of the Cb-glp-1 gene during evolution. Finally, the regulation of glp-1 mRNA, previously analyzed for Ce-glp-1, is conserved in Cb-glp-1, and we identify conserved 3′ UTR sequences that may serve as regulatory elements.


2005 ◽  
Vol 25 (7) ◽  
pp. 2583-2592 ◽  
Author(s):  
Landon L. Moore ◽  
Gerald Stanvitch ◽  
Mark B. Roth ◽  
David Rosen

ABSTRACT Prior to microtubule capture, sister centromeres resolve from one another, coming to rest on opposite surfaces of the condensing chromosome. Subsequent assembly of sister kinetochores at each sister centromere generates a geometry favorable for equal levels of segregation of chromatids. The holocentric chromosomes of Caenorhabditis elegans are uniquely suited for the study of centromere resolution and subsequent kinetochore assembly. In C. elegans, only two proteins have been identified as being necessary for centromere resolution, the kinase AIR-2 (prophase only) and the centromere protein HCP-4/CENP-C. Here we found that the loss of proteins involved in chromosome cohesion bypassed the requirement for HCP-4/CENP-C but not for AIR-2. Interestingly, the loss of cohesin proteins also restored the localization of HCP-6 to the kinetochore. The loss of the condensin II protein HCP-6 or MIX-1/SMC2 impaired centromere resolution. Furthermore, the loss of HCP-6 or MIX-1/SMC2 resulted in no centromere resolution when either nocodazole or RNA interference (RNAi) of the kinetochore protein KNL-1 perturbed spindle-kinetochore interactions. This result suggests that normal prophase centromere resolution is mediated by condensin II proteins, which are actively recruited to sister centromeres to mediate the process of resolution.


2003 ◽  
Vol 14 (7) ◽  
pp. 2972-2983 ◽  
Author(s):  
Lisa Timmons ◽  
Hiroaki Tabara ◽  
Craig C. Mello ◽  
Andrew Z. Fire

Introduction of double-stranded RNA (dsRNA) can elicit a gene-specific RNA interference response in a variety of organisms and cell types. In many cases, this response has a systemic character in that silencing of gene expression is observed in cells distal from the site of dsRNA delivery. The molecular mechanisms underlying the mobile nature of RNA silencing are unknown. For example, although cellular entry of dsRNA is possible, cellular exit of dsRNA from normal animal cells has not been directly observed. We provide evidence that transgenic strains of Caenorhabditis elegans transcribing dsRNA from a tissue-specific promoter do not exhibit comprehensive systemic RNA interference phenotypes. In these same animals, modifications of environmental conditions can result in more robust systemic RNA silencing. Additionally, we find that genetic mutations can influence the systemic character of RNA silencing in C. elegans and can separate mechanisms underlying systemic RNA silencing into tissue-specific components. These data suggest that trafficking of RNA silencing signals in C. elegans is regulated by specific physiological and genetic factors.


2006 ◽  
Vol 17 (8) ◽  
pp. 3678-3688 ◽  
Author(s):  
Prema Sundaram ◽  
Benjamin Echalier ◽  
Wang Han ◽  
Dawn Hull ◽  
Lisa Timmons

RNA interference (RNAi) is a conserved gene-silencing phenomenon that can be triggered by delivery of double-stranded RNA (dsRNA) to cells and is a widely exploited technology in analyses of gene function. Although a number of proteins that facilitate RNAi have been identified, current descriptions of RNAi and interrelated mechanisms are far from complete. Here, we report that the Caenorhabditis elegans gene haf-6 is required for efficient RNAi. HAF-6 is a member of the ATP-binding cassette (ABC) transporter gene superfamily. ABC transporters use ATP to translocate small molecule substrates across the membranes in which they reside, often against a steep concentration gradient. Collectively, ABC transporters are involved in a variety of activities, including protective or barrier mechanisms that export drugs or toxins from cells, organellar biogenesis, and mechanisms that protect against viral infection. HAF-6 is expressed predominantly in the intestine and germline and is localized to intracellular reticular organelles. We further demonstrate that eight additional ABC genes from diverse subfamilies are each required for efficient RNAi in C. elegans. Thus, the ability to mount a robust RNAi response to dsRNA depends upon the deployment of two ancient systems that respond to environmental assaults: RNAi mechanisms and membrane transport systems that use ABC proteins.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Kamesh Narasimhan ◽  
Samuel A Lambert ◽  
Ally WH Yang ◽  
Jeremy Riddell ◽  
Sanie Mnaimneh ◽  
...  

Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs.


2005 ◽  
Vol 25 (5-6) ◽  
pp. 299-307 ◽  
Author(s):  
Angelo Fortunato ◽  
Andrew G. Fraser

RNA-mediated interference (RNAi) has emerged recently as one of the most powerful functional genomics tools. RNAi has been particularly effective in the nematode worm C. elegans where RNAi has been used to analyse the loss-of-function phenotypes of almost all predicted genes. In this review, we illustrate how RNAi has been used to analyse gene function in C. elegans as well as pointing to some future directions for using RNAi to examine genetic interactions in a systematic manner.


2020 ◽  
Vol 6 (7) ◽  
pp. eaay7667 ◽  
Author(s):  
Zhe Zhang ◽  
Meirong Bai ◽  
Guilherme Oliveira Barbosa ◽  
Andrew Chen ◽  
Yuehua Wei ◽  
...  

Collagen is the most abundant protein in animals. Its dysregulation contributes to aging and many human disorders, including pathological tissue fibrosis in major organs. How premature collagen proteins in the endoplasmic reticulum (ER) assemble and route for secretion remains molecularly undefined. From an RNA interference screen, we identified an uncharacterized Caenorhabditis elegans gene tmem-131, deficiency of which impairs collagen production and activates ER stress response. We find that amino termini of human TMEM131 contain bacterial PapD chaperone–like domains, which recruit premature collagen monomers for proper assembly and secretion. Carboxy termini of TMEM131 interact with TRAPPC8, a component of the TRAPP tethering complex, to drive collagen cargo trafficking from ER to the Golgi. We provide evidence that previously undescribed roles of TMEM131 in collagen recruitment and secretion are evolutionarily conserved in C. elegans, Drosophila, and humans.


2000 ◽  
Vol 20 (6) ◽  
pp. 2129-2137 ◽  
Author(s):  
Sunnie R. Thompson ◽  
Elizabeth B. Goodwin ◽  
Marvin Wickens

ABSTRACT The 3′ untranslated region (3′UTR) of many eukaryotic mRNAs is essential for their control during early development. Negative translational control elements in 3′UTRs regulate pattern formation, cell fate, and sex determination in a variety of organisms.tra-2 mRNA in Caenorhabditis elegans is required for female development but must be repressed to permit spermatogenesis in hermaphrodites. Translational repression oftra-2 mRNA in C. elegans is mediated by tandemly repeated elements in its 3′UTR; these elements are called TGEs (for tra-2 and GLI element). To examine the mechanism of TGE-mediated repression, we first demonstrate that TGE-mediated translational repression occurs in Xenopus embryos and thatXenopus egg extracts contain a TGE-specific binding factor. Translational repression by the TGEs requires that the mRNA possess a poly(A) tail. We show that in C. elegans, the poly(A) tail of wild-type tra-2 mRNA is shorter than that of a mutant mRNA lacking the TGEs. To determine whether TGEs regulate poly(A) length directly, synthetic tra-2 3′UTRs with and without the TGEs were injected into Xenopus embryos. We find that TGEs accelerate the rate of deadenylation and permit the last 15 adenosines to be removed from the RNA, resulting in the accumulation of fully deadenylated molecules. We conclude that TGE-mediated translational repression involves either interference with poly(A)'s function in translation and/or regulated deadenylation.


2004 ◽  
Vol 15 (6) ◽  
pp. 2782-2793 ◽  
Author(s):  
Kanako Ono ◽  
Shoichiro Ono

Ovulation in the nematode Caenorhabditis elegans is coordinated by interactions between the somatic gonad and germ cells. Myoepithelial sheath cells of the proximal ovary are smooth muscle-like cells, but the regulatory mechanism of their contraction is unknown. We show that contraction of the ovarian muscle requires tropomyosin and troponin, which are generally major actin-linked regulators of contraction of striated muscle. RNA interference of tropomyosin or troponin C caused sterility by inhibiting ovarian contraction that is required for expelling mature oocytes into the spermatheca where fertilization takes place, thus causing accumulation of endomitotic oocytes in the ovary. Tropomyosin and troponin C were associated with actin filaments in the myoepithelial sheath, and the association of troponin C with actin was dependent on tropomyosin. A mutation in the actin depolymerizing factor/cofilin gene suppressed the ovulation defects by RNA interference of tropomyosin or troponin C. These results strongly suggest that tropomyosin and troponin are the actin-linked regulators for contraction of ovarian muscle in the C. elegans reproductive system.


Sign in / Sign up

Export Citation Format

Share Document