Has the Tibetan plateau risen in the Early/Mid–Miocene? Constraints from plate–motion reconstructions and seismicity of the Indian Ocean lithosphere

Author(s):  
Giampiero Iaffaldano

Summary Magnetisation records and seismic stratigraphy of the Indian Ocean lithosphere indicate that the Early/Mid–Miocene onset of diffuse contractional deformation coincided with slowdowns of the Indian and Capricorn plate motions. At present day such deformation is evidenced by the seismicity of the Indian ocean floor. Deformation onset and past plate–motion slowdowns have been interpreted as consequences of a sudden uplift of the Tibetan plateau by 1 to 2 km, as this – following previous estimates – would generate a tectonically–significant force between 4 · 1012 and 8 · 1012 N/m. However, this view remains at odds with paleo–altimetry estimates from geological and geochemical data, which indicate no increase in plateau altitude throughout the Miocene. Here I use well–established models of viscous/brittle dynamics in inverse mode in order to constrain the amount of force that should be delivered by the Tibetan region to the Indian tectonic setting in order to explain the observations above. Results constrain such a force within the range from 4.3 · 1011 to 3.5 · 1012 N/m. By comparison with previous estimates of the force associated with topography increase, these analyses suggest that the Early/Mid–Miocene onset of contractional deformation and plate–motion slowdowns within the Indian Ocean require minimal uplift of the Tibet plateau of a few hundred meters. The seemingly–contradicting inferences on Early/Mid–Miocene Tibetan uplift that come from geophysical and geological/geochemical observations can be reconciled by noting that the required uplift amount is less than what is resolvable by modern paleo–altimetry techniques.

Author(s):  
Yiming Liu ◽  
Yuhua Wang ◽  
Sanzhong Li ◽  
M. Santosh ◽  
Runhua Guo ◽  
...  

The Tibetan Plateau is composed of several microblocks, the tectonic affinity and paleogeographic correlations of which remain enigmatic. We investigated the Amdo and Jiayuqiao microblocks in central Tibet Plateau with a view to understand their tectonic setting and paleogeographic position within the Neoproterozoic supercontinent Rodinia. We present zircon U-Pb and Lu-Hf isotope, and whole-rock geochemical data on Neoproterozoic granitic gneisses from these microblocks. Zircon grains from the Jiayuqiao granitic gneiss yielded an age of 857 ± 9 Ma with variable εHf(t) values (−8.9 to 4.0). The Amdo granitic gneisses yielded ages of 893 ± 5 Ma, 807 ± 5 Ma, and 767 ± 11 Ma, with εHf(t) values in the range of −4.9 to 3.5. Geochemically, the granitoids belong to high-K calc-alkaline series, with the protolith derived from partial melting of ancient crustal components. The ascending parental magma of the Amdo granitoids experienced significant mantle contamination as compared to the less contaminated magmas that generated the Jiayuqiao intrusions. In contrast to the Lhasa, Himalaya, South China, and Tarim blocks, we suggest that the Amdo and Jiayuqiao microblocks probably formed a unified block during the Neoproterozoic and were located adjacent to the southwestern part of South China craton. The Neoproterozoic magmatism was probably associated with the subduction of the peripheral ocean under the South China craton and the delamination of lithospheric mantle beneath the Jiangnan orogen.


2021 ◽  
pp. 1-56
Author(s):  
Yu Zhao ◽  
Anmin Duan ◽  
Guoxiong Wu

AbstractThe atmospheric circulation changes dramatically over a few days before and after the onset of the South Asian monsoon in spring. It is accompanied by the annual maximum surface heating over the Tibetan Plateau. We conducted two sets of experiments with a coupled general circulation model to compare the response of atmospheric circulation and wind-driven circulation in the Indian Ocean to the thermal forcing of the Tibetan Plateau before and after the monsoon onset. The results show that the Tibetan Plateau's thermal forcing modulates the sea surface temperature (SST) of the Indian Ocean and the meridional circulation in the upper ocean with opposite effects during these two stages. The thermal forcing of the Tibetan Plateau always induces a southwesterly response over the northern Indian Ocean and weakens the northeasterly background circulation before the monsoon onset. Subsequently, wind-evaporation feedback results in a warming SST response. Meanwhile, the oceanic meridional circulation shows offshore upwellings in the north and southward transport in the upper layer crossing the equator, sinking near 15°S. After the monsoon onset, the thermal forcing of the Tibetan Plateau accelerates the background southwesterly and introduces a cooling response to the Indian Ocean SST. The response of oceanic meridional overturning circulation is limited to the north of the equator due to the location and structural evolution of the climatological local Hadley circulation. With an acceleration of the local Walker circulation, the underlying zonal currents also show corresponding changes, including a westerly drift along the equator, downwelling near Indonesia, offshore upwelling near Somalia, and a westward undercurrent.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Hao Yang ◽  
Guan-yu Xu ◽  
Xiaofang Wang ◽  
Chunguang Cui ◽  
Jingyu Wang ◽  
...  

There are continuous precipitation systems moving eastward from the Tibetan Plateau to the middle and lower reaches of the Yangtze-Huai River during the Mei-yu period. We selected 20 typical Mei-yu front precipitation cases from 2010 to 2015 based on observational and reanalysis data and studied the characteristics of their environmental fields. We quantitatively analyzed the transport and sources of water vapor in the rainstorms using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT_4.9) model. All 20 Mei-yu front precipitation cases occurred in a wide region from the Tibetan Plateau to the Yangtze-Huai River. The South Asian high and upper level jet stream both had strong intensities during the Mei-yu front rainstorm periods. Heavy rainfall mainly occurred in the divergence zone to the right of the high-level jet and in the convergence zone of the low-level jet, where strong vertical upward flows provided the dynamic conditions required for heavy rainfall. The water vapor mainly originated from the Indian Ocean, Bay of Bengal, and South China Sea. 52% of the air masses over the western Tibetan Plateau originated from Central Asia, which were rich in water vapor. The water vapor contribution at the initial position was only 41.5% due to the dry, cold air mass over Eurasia, but increased to 47.6% at the final position. Over the eastern Tibetan Plateau to the Sichuan Basin region, 40% of the air parcels came from the Indian Ocean, which was the main channel for water vapor transport. For the middle and lower reaches of the Yangtze River, 37% of the air parcels originated from the warm and humid Indian Ocean. The water vapor contribution at the initial position was 38.6%, but increased to 40.2% after long-distance transportation.


2019 ◽  
Vol 32 (20) ◽  
pp. 6917-6938 ◽  
Author(s):  
Yu Zhao ◽  
Anmin Duan ◽  
Guoxiong Wu ◽  
Ruizao Sun

Abstract The thermal effect of the Tibetan Plateau (TP) is known to exert substantial impacts on the atmospheric general circulation, suggesting that it may also influence the wind-driven circulation in the ocean through air–sea interactions. Here, several coupled general circulation model experiments are performed in order to investigate the short-term response of the Indian Ocean to the TP surface heat source in late spring (May). The results indicate that positive TP heating anomalies can induce significant atmospheric circulation responses over the northern Indian Ocean, characterized by easterly anomalies in the upper troposphere due to the enhanced South Asian high and lower-level southwesterly anomalies from the heat pumping effect. As a result, the surface wind speed over the northern Indian Ocean is reinforced, leading to intensified oceanic evaporation and subsequently cooler potential temperatures in the mixed layer. Wind-driven currents in the mixed layer are also affected. In the Bay of Bengal, Ekman transport facilitates water volume movement from west to east. In the Arabian Sea, water movement is weaker and the southward component is relatively more important. Both these areas show local meridional circulations with offshore upwelling in the northwest. Moreover, the cross-equatorial current is also enhanced in the eastern part of the tropical Indian Ocean. Overall, the upper layer in the northern Indian Ocean is efficiently modulated by the TP thermal forcing within one month.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2641
Author(s):  
Rongxiang Tian ◽  
Yaoming Ma ◽  
Weiqiang Ma

The Indian Ocean and East Asia are the most famous monsoonal regions, and the climate of East Asia is affected by the change in wind direction due to monsoons. The vertical motion of the atmosphere is closely related to the amount of precipitation in whichever particular region. Climate diagnosis and statistical analysis were used to study the vertical motion of air over the Indian Ocean and its relationship with the climate in East Asia. The vertical motion of air over the Indian Ocean had a significant correlation with the climate in China—especially with precipitation in the Tibetan Plateau and the Yangtze River Basin—as a result of the interaction of the vertical motion of air from the Indian Ocean, the Tibetan Plateau and the subpolar region in the Northern Hemisphere. The vertical motion over the Indian Ocean was weakened from 1981 to 2010, except at a height of 500 hPa in winter. The vertical motion of air over the Indian Ocean had a period of 7–9 years in summer and 9–12 years in winter. An ascending motion was dominant over most of the Indian Ocean throughout the year and the central axis of the ascending motion changed from a clockwise rotation from winter to summer to a counterclockwise rotation from summer to winter as a result of the monsoonal circulation over the Indian Ocean. These results will provide a theoretical reference for a comprehensive understanding of the climate in Asia and contribute to work on climate prediction in these regions.


Author(s):  
Roy Livermore

Tuzo Wilson introduces the concept of transform faults, which has the effect of transforming Earth Science forever. Resistance to the new ideas is finally overcome in the late 1960s, as the theory of moving plates is established. Two scientists play a major role in quantifying the embryonic theory that is eventually dubbed ‘plate tectonics’. Dan McKenzie applies Euler’s theorem, used previously by Teddy Bullard to reconstruct the continents around the Atlantic, to the problem of plate rotations on a sphere and uses it to unravel the entire history of the Indian Ocean. Jason Morgan also wraps plate tectonics around a sphere. Tuzo Wilson introduces the idea of a fixed hotspot beneath Hawaii, an idea taken up by Jason Morgan to create an absolute reference frame for plate motions.


Quaternary ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 14
Author(s):  
Zhengchen Li ◽  
Xianyan Wang ◽  
Jef Vandenberghe ◽  
Huayu Lu

The Wufo Basin at the margin of the northeastern Tibet Plateau connects the upstream reaches of the Yellow River with the lowland catchment downstream, and the fluvial terrace sequence in this basin provides crucial clues to understand the evolution history of the Yellow River drainage system in relation to the uplift and outgrowth of the Tibetan Plateau. Using field survey and analysis of Digital Elevation Model/Google Earth imagery, we found at least eight Yellow River terraces in this area. The overlying loess of the highest terrace was dated at 1.2 Ma based on paleomagnetic stratigraphy (two normal and two reversal polarities) and the loess-paleosol sequence (12 loess-paleosol cycles). This terrace shows the connections of drainage parts in and outside the Tibetan Plateau through its NE margin. In addition, we review the previously published data on the Yellow River terraces and ancient large lakes in the basins. Based on our new data and previous researches, we conclude that the modern Yellow River, with headwaters in the Tibet Plateau and debouching in the Bohai Sea, should date from at least 1.2 Ma. Ancient large lakes (such as the Hetao and Sanmen Lakes) developed as exorheic systems and flowed through the modern Yellow River at that time.


Author(s):  
Yin Liu ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Kefa Zhou ◽  
Rongshe Li ◽  
...  

Carboniferous-Triassic magmatism in northern Qiangtang, central Tibet, China, played a key role in the evolution of the Tibetan Plateau yet remains a subject of intense debate. New geochronological and geochemical data from adakitic, Nb-enriched, and normal arc magmatic rocks, integrated with results from previous studies, enable us to determine the Carboniferous-Triassic (312−205 Ma), arc-related, plutonic-volcanic rocks in northern Qiangtang. Spatial-temporal relationships reveal three periods of younging including southward (312−252 Ma), rapid northward (249−237 Ma), and normal northward (234−205 Ma) migrations that correspond to distinct slab geodynamic processes including continentward slab shallowing, rapid trenchward slab rollback, and normal trenchward rollback of the Jinsha Paleotethys rather than the Longmuco-Shuanghu Paleotethys, respectively. Moreover, varying degrees of coexistence of adakites/High-Mg andesites (HMAs)/Nb-enriched basalt-andesites (NEBs) and intraplate basalts in the above-mentioned stages is consistent with the magmatic effects of slab window triggered by ridge subduction, which probably started since the Late Carboniferous and continued into the Late Triassic. The Carboniferous-Triassic multiple magmatic migrations and ridge-subduction scenarios provide new insight into the geodynamic processes of the Jinsha Paleotethys and the growth mechanism of the Tibetan Plateau.


Sign in / Sign up

Export Citation Format

Share Document