scholarly journals DNA methylation QTL analysis identifies new regulators of human longevity

2020 ◽  
Vol 29 (7) ◽  
pp. 1154-1167 ◽  
Author(s):  
Silke Szymczak ◽  
Janina Dose ◽  
Guillermo G Torres ◽  
Femke-Anouska Heinsen ◽  
Geetha Venkatesh ◽  
...  

Abstract Human longevity is a complex trait influenced by both genetic and environmental factors, whose interaction is mediated by epigenetic mechanisms like DNA methylation. Here, we generated genome-wide whole-blood methylome data from 267 individuals, of which 71 were long-lived (90–104 years), by applying reduced representation bisulfite sequencing. We followed a stringent two-stage analysis procedure using discovery and replication samples to detect differentially methylated sites (DMSs) between young and long-lived study participants. Additionally, we performed a DNA methylation quantitative trait loci analysis to identify DMSs that underlie the longevity phenotype. We combined the DMSs results with gene expression data as an indicator of functional relevance. This approach yielded 21 new candidate genes, the majority of which are involved in neurophysiological processes or cancer. Notably, two candidates (PVRL2, ERCC1) are located on chromosome 19q, in close proximity to the well-known longevity- and Alzheimer’s disease-associated loci APOE and TOMM40. We propose this region as a longevity hub, operating on both a genetic (APOE, TOMM40) and an epigenetic (PVRL2, ERCC1) level. We hypothesize that the heritable methylation and associated gene expression changes reported here are overall advantageous for the LLI and may prevent/postpone age-related diseases and facilitate survival into very old age.

2019 ◽  
Vol 31 (1) ◽  
pp. 128
Author(s):  
L. Moley ◽  
R. Jones ◽  
R. Kaundal ◽  
A. Thomas ◽  
A. Benninghoff ◽  
...  

Somatic cell NT (SCNT) efficiency remains poor, preventing the technology from being regularly used in the agricultural industry. It is believed that faulty epigenetic reprogramming of SCNT embryos leads to the low overall success. A clear apoptotic signature is associated with inappropriate gene expression and epigenomic aberrancies in many experimental cell culture systems, and we hypothesised that an apoptosis biomarker could be used to effectively separate properly reprogrammed porcine SCNT embryos from those that are destined to fail due to incomplete reprogramming. Therefore, our objective was to evaluate global gene expression and DNA methylation patterns in high- and low-apoptosis individual embryos in an effort to characterise the extent of genomic reprogramming that had taken place. Porcine SCNT blastocysts on Day 6 of development were stained with a nontoxic, noninvasive caspase activity reporter, and the top and bottom 20% of detected caspase activity were classified as high and low apoptosis, respectively (3 replicate cloning sessions; n=13 embryos per group). Genomic DNA and total RNA were isolated from each individual blastocyst. The RNA sequencing libraries were prepared using the Ovation SoLo RNA-Seq system (NuGen, San Carlos, CA, USA). Reduced representation bisulfite sequencing libraries were prepared for DNA methylation analysis using a modification of the single-cell reduced representation bisulfite sequencing global DNA methylation analysis approach detailed by Guo et al. (2015 Nat. Protoc. 10, 645-59). The RNA sequencing analysis using EdgeR (https://bioconductor.org/packages/release/bioc/html/edgeR.html) revealed 175 total differentially expressed genes (fold change ≥1.5; false discovery rate ≤0.05) between the high- and low-apoptosis SCNT embryos. This list of differentially expressed genes was used to perform enrichment analysis to identify overrepresented Gene Ontology (GO) terms or Kyoto Encyclopedia of Genes and Genomes pathways (DAVID Ease version 6.8 (https://david.ncifcrf.gov/) against the Sus scrofa background genome). However, no significantly enriched GO terms or pathways were identified (false discovery rate P>0.05). Analysis of global DNA methylation patterns between high- and low-apoptosis SCNT embryos using MethylKit (Akalin et al. 2012Genome Biol. 13, R87) revealed 335 differentially methylated 100-bp regions with at least 25% difference in methylation (adjusted P ≤ 0.01). Gene transcription start sites associated with these regions were used for enrichment analysis; again, no significant enrichment of GO terms or Kyoto Encyclopedia of Genes and Genomes pathways was identified. Principal component analysis of CpG methylation showed the low-apoptosis embryos clustering more tightly than the high-apoptosis embryos, which were highly scattered. Ongoing comparisons of high- and low-apoptosis cloned embryos with naturally fertilized embryos produced invivo may provide more information about which embryos were properly reprogrammed. Although we are still pursuing a link between reprogramming and gene expression in high- and low-apoptosis embryos, we conclude that these data support a model of stochastic epigenetic reprogramming following SCNT and reinforce the necessity of identifying embryos most likely to be successful due to proper epigenetic reprogramming in order to increase SCNT efficiency.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 850
Author(s):  
Marcello Del Corvo ◽  
Silvia Bongiorni ◽  
Bruno Stefanon ◽  
Sandy Sgorlon ◽  
Alessio Valentini ◽  
...  

Dairy cattle health, wellbeing and productivity are deeply affected by stress. Its influence on metabolism and immune response is well known, but the underlying epigenetic mechanisms require further investigation. In this study, we compared DNA methylation and gene expression signatures between two dairy cattle populations falling in the high- and low-variant tails of the distribution of milk cortisol concentration (MC), a neuroendocrine marker of stress in dairy cows. Reduced Representation Bisulfite Sequencing was used to obtain a methylation map from blood samples of these animals. The high and low groups exhibited similar amounts of methylated CpGs, while we found differences among non-CpG sites. Significant methylation changes were detected in 248 genes. We also identified significant fold differences in the expression of 324 genes. KEGG and Gene Ontology (GO) analysis showed that genes of both groups act together in several pathways, such as nervous system activity, immune regulatory functions and glucocorticoid metabolism. These preliminary results suggest that, in livestock, cortisol secretion could act as a trigger for epigenetic regulation and that peripheral changes in methylation can provide an insight into central nervous system functions.


2020 ◽  
Author(s):  
Marta Robertson ◽  
Mariano Alvarez ◽  
Thomas van Gurp ◽  
Cornelis A. M. Wagemaker ◽  
Fahong Yu ◽  
...  

SummaryDespite the limitations of genetic bottlenecks, several invasive species appear to thrive in non-native ranges with extremely low levels of sequence-based genetic variation. We previously demonstrated differentiation of DNA methylation to habitat types of the highly clonal, genetically depauperate Japanese knotweeds using anonymous markers, but the functional relevance of this DNA methylation variation is unknown. Here, we sequenced the full transcriptome combined with a reduced representation bisulfite sequencing approach, epigenotyping by sequencing (epiGBS), to characterize the association among DNA methylation, functional transcripts and the diverse habitat types occupied by the invasive Reynoutria species. We identified 50,435 putative transcripts overall, of which 48,866 were annotated with the NCBI NR database. Of these 17,872 (35%) and 16,122 (32%) transcripts shared sequence identity with Arabidopsis thaliana and Beta vulgaris, respectively. We found genetic differentiation by habitat type suggesting the action of selection and a marginal pattern of differentiation of DNA methylation among habitats, which appears to be associated with sequence differences. However, we found no individual methylation loci associated with habitat, limiting our ability to make functional interpretations. Regardless of the source of variation in DNA methylation, these changes may represent an important component of the response to environmental conditions, particularly in highly clonal plants, but more fine scale genomics analysis is required to test if DNA methylation variation in this system is responsible for functional divergence.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Elina Nikkola ◽  
Arthur Ko ◽  
Mark J Connolly ◽  
Yinn Cher Ooi ◽  
Päivi Pajukanta ◽  
...  

Background: Remote ischemic conditioning (RIC) is a phenomenon by which brief periods of sublethal ischemia in one tissue confers protection from ischemia to distant tissues. We hypothesize that RIC triggers a cascade of integrated gene expression and methylation changes, leading to neuroprotection in subarachnoidal hemorrhage (SAH) patients. Our goal was to identify and compare changes in DNA methylation and gene expression profiles before and after RIC. Methods: Patients enrolled in a clinical trial of RIC after SAH, receiving RIC by limb cuff transient ischemia sessions. Fourteen SAH patients (64% female, mean age 51) underwent 3-4 RIC sessions and gave a blood sample before and after RIC, seven days apart. The transcriptome analysis of whole blood was performed using paired-end, 100-bp RNA-sequencing. We employed STAR and HTSeq to align and count reads; EdgeR to normalize the counts and detect differential expression (DE); and David to search for functional categories of the DE genes. Genome-wide DNA methylation profiles were assessed using reduced representation bisulfite sequencing (RRBS); Bismark with Bowtie to align the RRBS data, and the differential methylation analysis package (DMAP) to call the methylation status of CpG sites. Bedtools was used to overlap the DE genes with differentially methylated regions. Results: Of the 12,411 genes passing QC, 168 genes were differentially expressed after RIC (FDR<0.05). These genes were enriched for pathways involving mitosis and nuclear division (P50% after RIC in at least one individual. Of the 8,069 sites, 723 were differentially methylated (Bonferroni P<0.05). Our overlap analysis showed that 88 of the significantly altered methylation sites resided in 39 DE genes, including CEACAM8 and CRISP3, both implicated previously for stroke. Conclusions: Our data suggest that RIC alters expression of a specific set of genes involved in stroke via changes in regional DNA methylation. Further studies are warranted to replicate these pilot results.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2055 ◽  
Author(s):  
Yunshun Chen ◽  
Bhupinder Pal ◽  
Jane E. Visvader ◽  
Gordon K. Smyth

Studies in epigenetics have shown that DNA methylation is a key factor in regulating gene expression. Aberrant DNA methylation is often associated with DNA instability, which could lead to development of diseases such as cancer. DNA methylation typically occurs in CpG context. When located in a gene promoter, DNA methylation often acts to repress transcription and gene expression. The most commonly used technology of studying DNA methylation is bisulfite sequencing (BS-seq), which can be used to measure genomewide methylation levels on the single-nucleotide scale. Notably, BS-seq can also be combined with enrichment strategies, such as reduced representation bisulfite sequencing (RRBS), to target CpG-rich regions in order to save per-sample costs. A typical DNA methylation analysis involves identifying differentially methylated regions (DMRs) between different experimental conditions. Many statistical methods have been developed for finding DMRs in BS-seq data. In this workflow, we propose a novel approach of detecting DMRs using edgeR. By providing a complete analysis of RRBS profiles of epithelial populations in the mouse mammary gland, we will demonstrate that differential methylation analyses can be fit into the existing pipelines specifically designed for RNA-seq differential expression studies. In addition, the edgeR generalized linear model framework offers great flexibilities for complex experimental design, while still accounting for the biological variability. The analysis approach illustrated in this article can be applied to any BS-seq data that includes some replication, but it is especially appropriate for RRBS data with small numbers of biological replicates.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Katherine R. Dobbs ◽  
Paula Embury ◽  
Emmily Koech ◽  
Sidney Ogolla ◽  
Stephen Munga ◽  
...  

Abstract Background Age-related changes in adaptive and innate immune cells have been associated with a decline in effective immunity and chronic, low-grade inflammation. Epigenetic, transcriptional, and functional changes in monocytes occur with aging, though most studies to date have focused on differences between young adults and the elderly in populations with European ancestry; few data exist regarding changes that occur in circulating monocytes during the first few decades of life or in African populations. We analyzed DNA methylation profiles, cytokine production, and inflammatory gene expression profiles in monocytes from young adults and children from western Kenya. Results We identified several hypo- and hyper-methylated CpG sites in monocytes from Kenyan young adults vs. children that replicated findings in the current literature of differential DNA methylation in monocytes from elderly persons vs. young adults across diverse populations. Differentially methylated CpG sites were also noted in gene regions important to inflammation and innate immune responses. Monocytes from Kenyan young adults vs. children displayed increased production of IL-8, IL-10, and IL-12p70 in response to TLR4 and TLR2/1 stimulation as well as distinct inflammatory gene expression profiles. Conclusions These findings complement previous reports of age-related methylation changes in isolated monocytes and provide novel insights into the role of age-associated changes in innate immune functions.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
T. Ząbek ◽  
E. Semik-Gurgul ◽  
T. Szmatoła ◽  
A. Gurgul ◽  
A. Fornal ◽  
...  

Horses are one of the longest-living species of farm animals. Advanced age is often associated with a decrease in body condition, dysfunction of immune system, and late-onset disorders. Due to this, the search for new solutions in the prevention and treatment of pathological conditions of the advanced age of horses is desirable. That is why the identification of aging-related changes in the horse genome is interesting in this respect. In the recent years, the research on aging includes studies of age-related epigenetic effects observed on the DNA methylation level. We applied reduced representation bisulfite sequencing (RRBS) to uncover a range of age DMR sites in genomes of blood leukocytes derived from juvenile and aged horses of native Hucul breed. Genes colocated with age-related differentially methylated regions (age DMRs) are the members of pathways involved in cellular signal transduction, immune response, neurogenesis, differentiation, development, and cancer progression. A positive correlation was found between methylation states and gene expression in particular loci from our data set. Some of described age DMR-linked genes were also reported elsewhere. Obtained results contribute to the knowledge about the molecular basis of aging of equine blood cells.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3776-3776
Author(s):  
Jonathan E Brammer ◽  
Amy E Boles ◽  
Anthony Mansour ◽  
Aharon G. Freud ◽  
Monique Mathé-Allainmat ◽  
...  

Background and Rationale: T-cell large granular lymphocytic leukemia (T-LGLL) is an incurable clonal proliferation of CD8+ memory T-cells that leads to profound neutropenia and anemia with limited treatment options. The primary driver of T-LGLL is overexpression of interleukin-15 (IL-15), a gamma-chain cytokine. Previously, we have demonstrated that mice overexpressing IL-15 develop DNA hypermethylation and chromosomal instability that leads to the spontaneous development of LGLL (Mishra et al. Cancer Cell 2012). Further, the IL-15 promoter is known to be hypermethylated in cutaneous T-cell lymphoma (CTCL), another IL-15 driven malignancy (Mishra et al. Cancer Discovery 2016). In CTCL patients, the counterintuitive increase in IL-15 mRNA was due to hypermethylation of its promoter at the repressor binding sequences in the IL-15 gene. However, the methylation status of the IL-15 promoter in T-LGLL patients remains unknown. Concept: We hypothesize that the IL-15 promoter is hypermethylated in patients with T-LGLL, leading to aberrant overexpression of IL-15 and that this hypermethylation is a critical event in the leukemogenesis of T-LGLL. If true, demethylation of the IL-15 promoter with a resultant decrease in IL-15 transcripts should lead to apoptosis of T-LGLL cells. Hypomethylation of the IL-15 promoter, therefore, may provide a novel therapeutic approach to inhibiting IL-15, the primary driver of T-LGLL. Results: CD3+/CD8+/CD5-/dim T-cells were purified from peripheral blood of LGLL patient (n=3) and normal donor (ND) (n=3) by flow cytometry sorting. We analyzed DNA methylation and gene expression profiling using reduced representation bisulfite and RNA sequencing. With bioinformatics analysis, we determined differential methylation (1-way ANOVA P= 0.0178) and expression (1-way ANOVA P =0.0059). These data sets revealed significant differential hypermethylation of gene promoters in leukemic samples, compared to controls (Figure 1A). Reduced representation bisulfite sequencing that can identify differentially methylated regions at single base-pair resolutions demonstrated an increase in DNA methylation of the IL-15 promoter in patient samples over controls. To determine the functional significance of this finding, we treated the MOTN-1 T-LGLL cell line in vitro with the hypomethylating agent, 5-azacytidine (5-aza) at concentrations of 0.5 uM, 1 uM, 2.5 uM, and 5 uM. At 24 and 48 hours, a marked decrease in the viability of T-LGLL cells was observed, from 100% to 49.50%, p=0.037; particularly at higher concentrations of 5-aza (100% to 27% +11.30%, p=0.0030). Next, we sought to determine whether 5-aza induced hypomethylation of the IL-15 promoter. IL-15 gene expression in MOTN-1 T-LGLL cells treated with 5-aza was measured in comparison to control treated MOTN-1 cells. A marked decrease in IL-15 expression was observed at all concentrations of 5-aza compared to control (Figure 1B, p=0.0001). These results confirm that 5-aza leads to decreased transcription of the IL-15 gene, possibly due to hypomethylation of the IL-15 promoter. Finally, to determine whether a decrease in IL-15 alone was the cause of increased apoptosis of T-LGLL cells, we exposed MOTN-1 cells to a novel IL-15 inhibitor, IBI-15, and compared cell viability against MOTN-1 cells exposed to an inactive control, IBI-40. Even more profound decrease in cell viability was observed utilizing IBI-15 that targets the binding of IL-15 to its receptor (Figure 1C). Together, these data suggest that hypermethylation of the IL-15 promoter is critical to the pathogenesis of T-LGLL, and that treatment with 5-aza is sufficient to induce hypomethylation of the IL-15 promoter, decrease IL-15 transcription, and induce apoptosis in T-LGLL cells. Conclusions: Hypermethylation of the IL-15 promoter, with subsequent increase in IL-15, is critical to the pathogenesis of T-LGLL. Inhibition of the IL-15 promoter hypermethylation by 5-aza leads to down-regulation of the IL-15 gene transcript, which is sufficient to induce apoptosis of T-LGLL cells. These data suggest that 5-aza induced hypomethylation may be a novel method to induce IL-15 inhibition and a potentially efficacious clinical strategy against T-LGLL. Disclosures Brammer: Bioniz Therapeutics, Inc.: Research Funding; Viracta Therapeutics, Inc.: Research Funding; Verastem, Inc: Research Funding. Porcu:Daiichi: Research Funding; BeiGene: Other: Scientific Board, Research Funding; Spectrum: Consultancy; Viracta: Honoraria, Other: Scientific Board, Research Funding; Innate Pharma: Honoraria, Other: Scientific Board, Research Funding; Kyowa: Honoraria, Other: Scientific Board, Research Funding; ADCT: Research Funding; Incyte: Research Funding. OffLabel Disclosure: IBI-15 IBI-40 IL-15 inhibitor


Genomics ◽  
2020 ◽  
Vol 112 (6) ◽  
pp. 5147-5156
Author(s):  
Min Zhou ◽  
Liang Zhang ◽  
Qiao Yang ◽  
Chaochao Yan ◽  
Peng Jiang ◽  
...  

2019 ◽  
Vol 41 (15) ◽  
pp. 1514-1519 ◽  
Author(s):  
Lukas Streese ◽  
Abdul Waheed Khan ◽  
Arne Deiseroth ◽  
Shafaat Hussain ◽  
Rosa Suades ◽  
...  

Abstract Aims Impairments of retinal vessel diameter are associated with major adverse cardiovascular (CV) events. Promoter DNA methylation is a repressor of the mitochondrial adaptor p66Shc gene transcription, a key driver of ageing-induced reactive oxygen species. The study aimed to investigate whether high-intensity interval training (HIIT) affects retinal microvascular phenotype as well as p66Shc expression and oxidative stress in ageing subjects with increased CV risk from the EXAMIN AGE cohort. Methods and results Eighty-four sedentary subjects (mean age 59.4 ± 7.0 years) with ≥2 CV risk factors were randomized into either a 12-week HIIT or standard physical activity recommendations. Retinal arteriolar and venular diameters were measured by use of a retinal vessel analyser. As a marker of oxidative stress plasma 3-nitrotyrosine (3-NT) level was determined by ELISA. Gene expression of p66Shc and DNA methylation were assessed in mononuclear cells by RT-qPCR and methylated-DNA capture (MethylMiner Enrichment Kit) coupled with qPCR, respectively. High-intensity interval training reduced body mass index, fat mass, low-density lipoprotein and increased muscle mass, as well as maximal oxygen uptake (VO2max). Moreover, HIIT restored microvascular phenotype by inducing retinal arteriolar widening (pre: 175 ± 14 µm vs. post: 181 ± 13 µm, P = 0.001) and venular narrowing (pre: 222 ± 14 µm vs. post: 220 ± 14 µm, P = 0.007). After HIIT, restoration of p66Shc promoter methylation (P = 0.034) reduced p66Shc gene expression (P = 0.037) and, in turn, blunted 3-NT plasma levels (P = 0.002). Conclusion High-intensity interval training rescues microvascular dysfunction in ageing subjects at increased CV risk. Exercise-induced reprogramming of DNA methylation of p66Shc gene may represent a putative mechanistic link whereby exercise protects against age-related oxidative stress. Clinical trial registration  ClinicalTrials.gov: NCT02796976 (https://clinicaltrials.gov/ct2/show/NCT02796976).


Sign in / Sign up

Export Citation Format

Share Document