scholarly journals Slc2a10 knock-out mice deficient in ascorbic acid synthesis recapitulate aspects of arterial tortuosity syndrome and display mitochondrial respiration defects

2020 ◽  
Vol 29 (9) ◽  
pp. 1476-1488
Author(s):  
Annekatrien Boel ◽  
Joyce Burger ◽  
Marine Vanhomwegen ◽  
Aude Beyens ◽  
Marjolijn Renard ◽  
...  

Abstract Arterial tortuosity syndrome (ATS) is a recessively inherited connective tissue disorder, mainly characterized by tortuosity and aneurysm formation of the major arteries. ATS is caused by loss-of-function mutations in SLC2A10, encoding the facilitative glucose transporter GLUT10. Former studies implicated GLUT10 in the transport of dehydroascorbic acid, the oxidized form of ascorbic acid (AA). Mouse models carrying homozygous Slc2a10 missense mutations did not recapitulate the human phenotype. Since mice, in contrast to humans, are able to intracellularly synthesize AA, we generated a novel ATS mouse model, deficient for Slc2a10 as well as Gulo, which encodes for L-gulonolactone oxidase, an enzyme catalyzing the final step in AA biosynthesis in mouse. Gulo;Slc2a10 double knock-out mice showed mild phenotypic anomalies, which were absent in single knock-out controls. While Gulo;Slc2a10 double knock-out mice did not fully phenocopy human ATS, histological and immunocytochemical analysis revealed compromised extracellular matrix formation. Transforming growth factor beta signaling remained unaltered, while mitochondrial function was compromised in smooth muscle cells derived from Gulo;Slc2a10 double knock-out mice. Altogether, our data add evidence that ATS is an ascorbate compartmentalization disorder, but additional factors underlying the observed phenotype in humans remain to be determined.

2019 ◽  
Author(s):  
Annekatrien Boel ◽  
Joyce Burger ◽  
Marine Vanhomwegen ◽  
Aude Beyens ◽  
Marjolijn Renard ◽  
...  

AbstractArterial tortuosity syndrome (ATS) is a recessively inherited connective tissue disorder, mainly characterized by tortuosity and aneurysm formation of the major arteries. ATS is caused by loss-of-function mutations in SLC2A10, encoding the facilitative glucose transporter GLUT10. Former studies implicate GLUT10 in transport of dehydroascorbic acid, the oxidized form of ascorbic acid (AA). Mouse models carrying homozygous Slc2a10 missense mutations do not recapitulate the human phenotype. Since mice, in contrast to humans, are able to intracellularly synthesize AA, we generated a novel ATS mouse model, deficient for Slc2a10 as well as Gulo, which encodes for L-gulonolactone oxidase, an enzyme catalyzing the final step in AA biosynthesis in rodents. Gulo;Slc2a10 knock-out mice show mild phenotypic anomalies, which were absent in single knock-out controls. While Gulo;Slc2a10 knock-out mice do not fully phenocopy human ATS, histological and immunocytochemical analysis revealed compromised extracellular matrix formation. TGFβ signaling remained unaltered, while mitochondrial function was compromised in smooth muscle cells derived from Gulo;Slc2a10 knock-out mice. Altogether, our data add evidence that ATS is an ascorbate compartmentalization disorder, but additional factors underlying the observed phenotype in humans remain to be determined.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 651
Author(s):  
Laura Valls-Lacalle ◽  
Marta Consegal ◽  
Marisol Ruiz-Meana ◽  
Begoña Benito ◽  
Javier Inserte ◽  
...  

Previous studies demonstrated a reduction in myocardial scar size in heterozygous Cx43+/- mice subjected to permanent coronary occlusion. However, patients presenting with ST segment elevation myocardial infarction often undergo rapid coronary revascularization leading to prompt restoration of coronary flow. Therefore, we aimed to assess changes in scar size and left ventricular remodeling following transient myocardial ischemia (45 min) followed by 14 days of reperfusion using Cx43fl/fl (controls) and Cx43Cre-ER(T)/fl inducible knock-out (Cx43 content: 50%) mice treated with vehicle or 4-hydroxytamoxifen (4-OHT) to induce a Cre-ER(T)-mediated global deletion of the Cx43 floxed allele. The scar area (picrosirius red), measured 14 days after transient coronary occlusion, was similarly reduced in both vehicle and 4-OHT-treated Cx43Cre-ER(T)/fl mice, compared to Cx43fl/fl animals, having normal Cx43 levels (15.78% ± 3.42% and 16.54% ± 2.31% vs. 25.40% ± 3.14% and 22.43% ± 3.88% in vehicle and 4-OHT-treated mice, respectively, p = 0.027). Left ventricular dilatation was significantly attenuated in both Cx43-deficient groups (p = 0.037 for left ventricular end-diastolic diameter). These protective effects were correlated with an attenuated enhancement in pro-transforming growth factor beta 1 (TGFβ1) expression after reperfusion. In conclusion, our data demonstrate that Cx43 deficiency induces a protective effect on scar formation after transient coronary occlusion in mice, an effect associated with reduced left ventricular remodeling and attenuated enhancement in pro-TGFβ1 expression.


2019 ◽  
Author(s):  
Youseef Alghamdi ◽  
Mohamed Mohamed Soliman ◽  
Mohamed Nasan

Abstract Background : Hyperuricemia is an abnormal increase in uric acid levels in the blood. It is the cause of gout that manifested by inflammatory arthritis and painful disable. Therefore, current study evaluated the potential ameliorative impact of Lesinurad and Allopurinol on the kidneys of hyperuricemic mice at the biochemical, molecular and cellular levels. Methods : Lesinurad and allopurinol alone or in combination were orally administered to hyperuricemic and control mice for seven consecutive days. Levels of uric acid and blood urea nitrogen, along with antioxidants and inflammatory cytokines (IL-1β and TNF-a) were measured in the serum. The mRNA expression of mouse urate anion transporter-1, glucose transporter 9, organic anion transporters, in renal tissues were examined using quantitative real time PCR (qRT-PCR). Simultaneously, the immunoreactivity of transforming growth factor-beta 1 was examined immunohistochemically. Results : Lesinurad and allopurinol administration resulted in significant decrease in serum levels of uric acid, blood urea nitrogen, xanthine oxidase activity, catalase, glutathione peroxidase and inflammatory cytokines (IL-1β and TNF-a) reported in hyperuricemic mice. Both partially reversed oxonate-induced alterations in renal mURAT-1, mGLUT-9, mOAT-1 and mOAT-3 expressions, as well as alterations in the immunoreactivity of TGF- β1, resulting in the increase of renal uric acid secretion and excretion. The combined administration of lesinurad and ALP restored all altered parameters in a synergistic manner, improving renal function in the hyperuricemic mouse model employed. Conclusion : This study confirmed synergistic ameliorative hypouricemic impact of both lesinurad and allopurinol in the treatment of hyperuricemia in mice at the biochemical, molecular and cellular levels.


2010 ◽  
Vol 33 (1) ◽  
pp. 14 ◽  
Author(s):  
JinLan Chen ◽  
BuYun Li ◽  
YiFeng Yang ◽  
JianGuo Hu ◽  
TianLi Zhao ◽  
...  

Purpose: Transforming growth factor beta receptors II gene (TGFBR2) mutations associated with Marfan syndrome and Marfan-associated disorders have been investigated. However, such studies are limited in China. To obtain more information about TGFBR2 mutations, we analyzed 6 unrelated Chinese patients with Marfan-associated disorders and without ocular manifestation. Methods: The genomic DNA from blood leukocytes of these 6 patients and their relatives was isolated, and the entire coding region of TGFBR2 was amplified using PCR. We determined the sequence of TGFBR2 with the ABI 3100 Genetic Analyzer. Results: Three mutations were identified in TGFBR2. Two mutations were associated with Loeys-Dietz syndrome (LDS), which were distributed as following: one missense mutation R528C (caused by a 1582C > T substitution) and one polymorphism T315M (a rare SNP). The third mutation was a novel silent mutation associated with MFS2, which was K291K caused by an 873 C > T substitution. Conclusions: The TGFBR2 gene missense mutations are possibly causative mutations of Loeys-Dietz syndrome. This result suggests an increase in the mutation spectrum of Marfan-related disorders in China and possibly world-wide.


2020 ◽  
Author(s):  
Youseef Alghamdi ◽  
Mohamed Mohamed Soliman ◽  
Mohamed Nasan

Abstract Background : Hyperuricemia is an abnormal increase in uric acid levels in the blood. It is the cause of gout that manifested by inflammatory arthritis and painful disable. Therefore, current study evaluated the potential ameliorative impact of Lesinurad and Allopurinol on the kidneys of hyperuricemic mice at the biochemical, molecular and cellular levels. Methods : Lesinurad and allopurinol alone or in combination were orally administered to hyperuricemic and control mice for seven consecutive days. Levels of uric acid and blood urea nitrogen, along with antioxidants and inflammatory cytokines (IL-1β and TNF-a) were measured in the serum. The mRNA expression of mouse urate anion transporter-1, glucose transporter 9, organic anion transporters, in renal tissues were examined using quantitative real time PCR (qRT-PCR). Simultaneously, the immunoreactivity of transforming growth factor-beta 1 was examined immunohistochemically. Results : Lesinurad and allopurinol administration resulted in significant decrease in serum levels of uric acid, blood urea nitrogen, xanthine oxidase activity, catalase, glutathione peroxidase and inflammatory cytokines (IL-1β and TNF-a) reported in hyperuricemic mice. Both partially reversed oxonate-induced alterations in renal mURAT-1, mGLUT-9, mOAT-1 and mOAT-3 expressions, as well as alterations in the immunoreactivity of TGF- β1, resulting in the increase of renal uric acid secretion and excretion. The combined administration of lesinurad and ALP restored all altered parameters in a synergistic manner, improving renal function in the hyperuricemic mouse model employed. Conclusion : This study confirmed synergistic ameliorative hypouricemic impact of both lesinurad and allopurinol in the treatment of hyperuricemia in mice at the biochemical, molecular and cellular levels.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 861-870 ◽  
Author(s):  
A.L. Finelli ◽  
C.A. Bossie ◽  
T. Xie ◽  
R.W. Padgett

Seven zygotically active genes have been identified in Drosophila that determine the fate of dorsal cells in the developing embryo. decapentaplegic (dpp), a member of the transforming growth factor-beta (TGF-beta) family, appears to play the central role in dorsal ectoderm formation, as mutations in this gene confer the most severe mutant phenotype of this group of genes. dpp's activity is modulated by tolloid, which also has a role in the determination of dorsal cell fate. tolloid encodes a protein that contains a metalloprotease domain and regulatory domains consisting of two EGF motifs and five C1r/s repeats. We have generated several mutant tolloid alleles and have examined their interaction with a graded set of dpp point alleles. Some tolloid alleles act as dominant enhancers of dpp in a trans heterozygote, and are therefore antimorphic alleles. However, a tolloid deficiency shows no such genetic interaction. To characterize the nature of the tolloid mutations, we have sequenced eighteen tolloid alleles. We find that five of the seven alleles that act as dominant enhancers of dpp are missense mutations in the protease domain. We also find that most tolloid alleles that do not interact with dpp are missense mutations in the C-terminal EGF and C1r/s repeats, or encode truncated proteins that delete these repeats. Based on these data, we propose a model in which the tolloid protein functions by forming a complex containing DPP via protein-interacting EGF and C1r/s domains, and that the protease activity of TOLLOID is necessary, either directly or indirectly, for the activation of the DPP complex.(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 25 (9) ◽  
pp. 3639-3647 ◽  
Author(s):  
Jun Shen ◽  
Christopher A. Walsh

ABSTRACT 5′-TG-3′-interacting factor or transforming growth factor beta (TGF-β)-induced factor (TGIF) belongs to a family of evolutionarily conserved proteins that are characterized by an atypical three-amino-acid loop extension homeodomain. In vitro studies have implicated TGIF as a transcriptional repressor and corepressor in retinoid and TGF-β signaling pathways that regulate several important biological processes. Heterozygous nonsense and missense mutations of the human TGIF gene have been associated with holoprosencephaly, the most common congenital malformation of the forebrain. In mice, Tgif mRNA is expressed ubiquitously in the ventricular neuroepithelium at embryonic day 10.5 (E10.5) but displays a medial to lateral gradient in the developing cerebral cortex at E12.5. The expression quickly declines by E14.5. The spatiotemporal expression profile of Tgif is consistent with its involvement in midline forebrain development. To better understand the function of Tgif in forebrain patterning and proliferation in vivo, we generated mice lacking Tgif by targeted deletion of exons 2 and 3, which encode 98% of the amino acids. Tgif − / − mice had no detectable Tgif protein by Western blotting. Surprisingly, however, these mice were viable and fertile. In addition, there were no discernible derangements in any of the major organ systems, including the forebrain. Overall our results point to a possible functional redundancy of Tgif, potentially provided by the closely related Tgif2.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Shanshan Zhou ◽  
Yonggang Wang ◽  
Yi Tan ◽  
Xiaohong Cai ◽  
Lu Cai ◽  
...  

The present study was to explore the effect of metallothionein (MT) on intermittent hypoxia (IH) induced aortic pathogenic changes. Markers of oxidative damages, inflammation, and vascular remodeling were observed by immunohistochemical staining after 3 days and 1, 3, and 8 weeks after IH exposures. Endogenous MT was induced after 3 days of IH but was significantly decreased after 8 weeks of IH. Compared with the wild-type mice, MT knock-out mice exhibited earlier and more severe pathogenic changes of oxidative damages, inflammatory responses, and cellular apoptosis, as indicated by the significant accumulation of collagen, increased levels of connective tissue growth factor, transforming growth factorβ1, tumor necrosis factor-alpha, vascular cell adhesion molecule 1,3-nitrotyrosine, and 4-hydroxy-2-nonenal in the aorta. These findings suggested that chronic IH may lead to aortic damages characterized by oxidative stress and inflammation, and MT may play a pivotal role in the above pathogenesis process.


2018 ◽  
Vol 19 (8) ◽  
pp. 2265 ◽  
Author(s):  
Eleonora Guadagnin ◽  
Davi Mázala ◽  
Yi-Wen Chen

Signal transducer and activator of transcription 3 (STAT3) signaling plays critical roles in regulating skeletal muscle mass, repair, and diseases. In this review, we discuss the upstream activators of STAT3 in skeletal muscles, with a focus on interleukin 6 (IL6) and transforming growth factor beta 1 (TGF-β1). We will also discuss the double-edged effect of STAT3 activation in the muscles, including the role of STAT3 signaling in muscle hypertrophy induced by exercise training or muscle wasting in cachectic diseases and muscular dystrophies. STAT3 is a critical regulator of satellite cell self-renewal after muscle injury. STAT3 knock out affects satellite cell myogenic progression by impairing proliferation and inducing premature differentiation. Recent studies in STAT3 signaling demonstrated its direct role in controlling myogenic capacity of myoblasts and satellite cells, as well as the potential benefit in using STAT3 inhibitors to treat muscle diseases. However, prolonged STAT3 activation in muscles has been shown to be responsible for muscle wasting by activating protein degradation pathways. It is important to balance the extent of STAT3 activation and the duration and location (cell types) of the STAT3 signaling when developing therapeutic interventions. STAT3 signaling in other tissues and organs that can directly or indirectly affects skeletal muscle health are also discussed.


Sign in / Sign up

Export Citation Format

Share Document