Exome sequencing and functional studies in zebrafish identify WDR8 as the causative gene for isolated Microspherophakia in Indian families

2021 ◽  
Author(s):  
M Madhangi ◽  
Debanjan Dutta ◽  
Sautan Show ◽  
Vishwanath K Bhat ◽  
Mohammad I Rather ◽  
...  

Abstract Isolated Microspherophakia (MSP) is an autosomal recessive disorder characterized by a smaller than normal spherical lens. Till date, LTBP2 is the only gene shown to cause MSP. We used homozygosity mapping and whole-exome sequencing and identified a homozygous mutation, c.1148C > T (p.Pro383Leu), in the WDR8 (or WRAP73) gene in two Indian MSP families. In vitro experiments showed that the missense mutation renders the protein unstable. WDR8 is a centriolar protein that has important roles in centrosomal assembly, spindle pole formation and ciliogenesis. Co-immunoprecipitation experiments from HeLa cells indicated that the mutation interferes with the interaction of WDR8 with its binding partners. In zebrafish, both morpholino-mediated knockdown and CRISPR/Cas knockout of wdr8 resulted in decreased eye and lens size. The lack of wdr8 affected cell cycle progression in the retinal cells, causing a reduction in cell numbers in the retina and lens. The reduction in eye size and the cell cycle defects were rescued by exogenous expression of the human wild-type WDR8. However, the human mutant WDR8 (p.Pro383Leu) was unable to rescue the eye defects, indicating that the missense mutation abrogates WDR8 protein function. Thus, our zebrafish results suggested that WDR8 is the causative gene for MSP in these Indian families.

2018 ◽  
Vol 55 (3) ◽  
pp. 198-204 ◽  
Author(s):  
Wen-Bin He ◽  
Chao-Feng Tu ◽  
Qiang Liu ◽  
Lan-Lan Meng ◽  
Shi-Min Yuan ◽  
...  

BackgroundThe genetic causes of the majority of male and female infertility caused by human non-obstructive azoospermia (NOA) and premature ovarian insufficiency (POI) with meiotic arrest are unknown.ObjectiveTo identify the genetic cause of NOA and POI in two affected members from a consanguineous Chinese family.MethodsWe performed whole-exome sequencing of DNA from both affected patients. The identified candidate causative gene was further verified by Sanger sequencing for pedigree analysis in this family. In silico analysis was performed to functionally characterise the mutation, and histological analysis was performed using the biopsied testicle sample from the male patient with NOA.ResultsWe identified a novel homozygous missense mutation (NM_007068.3: c.106G>A, p.Asp36Asn) in DMC1, which cosegregated with NOA and POI phenotypes in this family. The identified missense mutation resulted in the substitution of a conserved aspartic residue with asparaginate in the modified H3TH motif of DMC1. This substitution results in protein misfolding. Histological analysis demonstrated a lack of spermatozoa in the male patient’s seminiferous tubules. Immunohistochemistry using a testis biopsy sample from the male patient showed that spermatogenesis was blocked at the zygotene stage during meiotic prophase I.ConclusionsTo the best of our knowledge, this is the first report identifying DMC1 as the causative gene for human NOA and POI. Furthermore, our pedigree analysis shows an autosomal recessive mode of inheritance for NOA and POI caused by DMC1 in this family.


1993 ◽  
Vol 123 (2) ◽  
pp. 387-403 ◽  
Author(s):  
M T Brown ◽  
L Goetsch ◽  
L H Hartwell

The function of the essential MIF2 gene in the Saccharomyces cerevisiae cell cycle was examined by overepressing or creating a deficit of MIF2 gene product. When MIF2 was overexpressed, chromosomes missegregated during mitosis and cells accumulated in the G2 and M phases of the cell cycle. Temperature sensitive mutants isolated by in vitro mutagenesis delayed cell cycle progression when grown at the restrictive temperature, accumulated as large budded cells that had completed DNA replication but not chromosome segregation, and lost viability as they passed through mitosis. Mutant cells also showed increased levels of mitotic chromosome loss, supersensitivity to the microtubule destabilizing drug MBC, and morphologically aberrant spindles. mif2 mutant spindles arrested development immediately before anaphase spindle elongation, and then frequently broke apart into two disconnected short half spindles with misoriented spindle pole bodies. These findings indicate that MIF2 is required for structural integrity of the spindle during anaphase spindle elongation. The deduced Mif2 protein sequence shared no extensive homologies with previously identified proteins but did contain a short region of homology to a motif involved in binding AT rich DNA by the Drosophila D1 and mammalian HMGI chromosomal proteins.


2017 ◽  
Vol 32 (10) ◽  
pp. 867-870 ◽  
Author(s):  
Hannah Song ◽  
Sina Haeri ◽  
Hannes Vogel ◽  
Marjo van der Knaap ◽  
Keith Van Haren

Objective: We describe 2 male siblings with a severe, prenatal phenotype of vanishing white matter disease and the impact of whole exome sequencing on their diagnosis and clinical care. Methods: The 2 children underwent detailed clinical characterization, through clinical and laboratory testing, as well as prenatal and postnatal imaging. Biobanked blood from the 2 siblings was submitted for whole exome sequencing at Baylor Laboratories. Results: Both male children had abnormal prenatal neuroimaging and suffered precipitous, fatal neurologic decline. Neuropathologic findings included subependymal pseudocysts, microcalcifications, and profound lack of brain myelin and sparing of peripheral nerve myelin. A novel homozygous mutation in the EIF2B3 gene (c.97A>G [p.Lys33Glu]) was found in both children; both parents were heterozygous carriers. The family subsequently conceived a healthy child via in vitro fertilization with preimplantation mutation screening. Conclusion: These histories expand the prenatal phenotype of eIF2b-related disorders and poignantly illustrate the impact that unbiased genomic sequencing can have on the diagnosis and medical decision making for families affected by childhood neurodegenerative disorders.


2011 ◽  
Vol 105 (04) ◽  
pp. 616-625 ◽  
Author(s):  
Chung-Yang Kao ◽  
Chia-Ni Lin ◽  
Yung-Li Yang ◽  
Nobuko Hamaguchi ◽  
Shu-Jhu Yang ◽  
...  

SummaryA patient with severe haemophilia B with a glycine-to-valine missense mutation at residue 190 (c25, chymotrypsin numbering) in factor IX (FIX; FIX-G190V or FIX-FuChou) had <1% of normal FIX clotting activity and 36% of normal FIX antigen levels (cross-reacting material-reduced, CRMr). Residue 190 in the C-terminal protease domain of human FIX is highly conserved in mammalian species and the serine protease family, suggesting that it has an indispensable role in protein function. To explore the pathological mechanism by which this mutation contributes to dysfunction of the FIX molecule, we functionally characterised FIX-G190V in vitro and in vivo. Liver-specific FIX-G190V gene expression following hydrodynamic plasmid delivery into haemophilia B mice revealed a 5.7-fold reduction in specific clotting activity compared with FIX-WT (wild type) and a two-fold decrease in plasma FIX-G190V concentration. Pulse-chase analysis demonstrated that FIX-G190V was secreted at a significantly slower rate than was FIX-WT. Purified FIX-G190V and FIX-WT displayed normal calcium-dependent conformational changes as shown by intrinsic fluorescence quenching. The in vivo half-lives of FIX-G190V and FIX-WT were indistinguishable. FIX-G190V was, however, more readily degraded than FIX-WT, especially after being activated by the active form of FXI. The vulnerable sites were mapped to the peptide bonds at Arg116-Leu117, Lys265-Tyr266, Arg327-Val328, and Arg338-Ser339, which are in the exposed loops of the FIX molecule. Also, failure of FXIa-activated FIX-G190V to bind p-aminobenzamidine indicated an abnormal conformation of the active-site pocket. Thus, the mutation at residue 190 of FIX may result in protein misfolding that affects secretion, clotting function, and hydrolysis.


2001 ◽  
Vol 12 (6) ◽  
pp. 1645-1669 ◽  
Author(s):  
Victor J. Cid ◽  
Mark J. Shulewitz ◽  
Kent L. McDonald ◽  
Jeremy Thorner

In Saccharomyces cerevisiae, entry into mitosis requires activation of the cyclin-dependent kinase Cdc28 in its cyclin B (Clb)-associated form. Clb-bound Cdc28 is susceptible to inhibitory tyrosine phosphorylation by Swe1 protein kinase. Swe1 is itself negatively regulated by Hsl1, a Nim1-related protein kinase, and by Hsl7, a presumptive protein-arginine methyltransferase. In vivo all three proteins localize to the bud neck in a septin-dependent manner, consistent with our previous proposal that formation of Hsl1-Hsl7-Swe1 complexes constitutes a checkpoint that monitors septin assembly. We show here that Hsl7 is phosphorylated by Hsl1 in immune-complex kinase assays and can physically associate in vitro with either Hsl1 or Swe1 in the absence of any other yeast proteins. With the use of both the two-hybrid method and in vitro binding assays, we found that Hsl7 contains distinct binding sites for Hsl1 and Swe1. A differential interaction trap approach was used to isolate four single-site substitution mutations in Hsl7, which cluster within a discrete region of its N-terminal domain, that are specifically defective in binding Hsl1. When expressed in hsl7Δ cells, each of these Hsl7 point mutants is unable to localize at the bud neck and cannot mediate down-regulation of Swe1, but retains other functions of Hsl7, including oligomerization and association with Swe1. GFP-fusions of these Hsl1-binding defective Hsl7 proteins localize as a bright perinuclear dot, but never localize to the bud neck; likewise, inhsl1Δ cells, a GFP-fusion to wild-type Hsl7 or native Hsl7 localizes to this dot. Cell synchronization studies showed that, normally, Hsl7 localizes to the dot, but only in cells in the G1 phase of the cell cycle. Immunofluorescence analysis and immunoelectron microscopy established that the dot corresponds to the outer plaque of the spindle pole body (SPB). These data demonstrate that association between Hsl1 and Hsl7 at the bud neck is required to alleviate Swe1-imposed G2-M delay. Hsl7 localization at the SPB during G1 may play some additional role in fine-tuning the coordination between nuclear and cortical events before mitosis.


2000 ◽  
Vol 11 (1) ◽  
pp. 65-70
Author(s):  
TOSHIAKI MONKAWA ◽  
ISAO KURIHARA ◽  
KAZUO KOBAYASHI ◽  
MATSUHIKO HAYASHI ◽  
TAKAO SARUTA

Abstract. Gitelman's syndrome (GS) is an autosomal recessive disorder characterized by metabolic alkalosis, hypokalemia, hypomagnesemia, and hypocalciuria that has recently been reported to be linked to thiazide-sensitive Na-Cl cotransporter (TSC) gene mutations. In this study, possible mutations in the TSC gene of six Japanese patients clinically diagnosed with GS were investigated. Twenty-six exons encoding TSC were amplified by PCR and then completely sequenced by the direct sequencing method. Patient A showed a missense mutation of Arg 642 to Cys on the paternal allele and a missense mutation of Val 578 to Met and a 2-bp deletion (nucleotide 2543-2544) on the maternal allele. This deletion results in a frameshift that alters codon 837 to encode a stop signal rather than phenylalanine, and it is predicted to lead to loss of the latter half of the intracellular carboxy terminus. In the second family, two affected sisters, patients B and C, had a homozygous missense mutation of Thr 180 to Lys. Both of their parents, who are consanguineously married, have a heterozygous Thr180Lys mutation. Patient D has a homozygous mutation Thr180Lys, which is the same as the second family. Haplotype analysis indicates that patients B and C are not related to patient D. In patients E and F, we could identify only one mutant allele; Ala569Glu and Leu849His, respectively. All of the mutations identified are novel except for the Arg642Cys mutation, which has been found in a Japanese GS patient. Although further in vitro study is required to prove that the mutations are responsible for GS, it is possible that Thr180Lys and Arg642Cys mutations might be common mutations in Japanese GS.


Neurology ◽  
2018 ◽  
Vol 91 (4) ◽  
pp. e319-e330 ◽  
Author(s):  
Valentina Muto ◽  
Elisabetta Flex ◽  
Zachary Kupchinsky ◽  
Guido Primiano ◽  
Hamid Galehdari ◽  
...  

ObjectiveTo characterize clinically and molecularly an early-onset, variably progressive neurodegenerative disorder characterized by a cerebellar syndrome with severe ataxia, gaze palsy, dyskinesia, dystonia, and cognitive decline affecting 11 individuals from 3 consanguineous families.MethodsWe used whole-exome sequencing (WES) (families 1 and 2) and a combined approach based on homozygosity mapping and WES (family 3). We performed in vitro studies to explore the effect of the nontruncating SQSTM1 mutation on protein function and the effect of impaired SQSTM1 function on autophagy. We analyzed the consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in vivo using zebrafish as a model.ResultsWe identified 3 homozygous inactivating variants, including a splice site substitution (c.301+2T>A) causing aberrant transcript processing and accelerated degradation of a resulting protein lacking exon 2, as well as 2 truncating changes (c.875_876insT and c.934_936delinsTGA). We show that loss of SQSTM1 causes impaired production of ubiquitin-positive protein aggregates in response to misfolded protein stress and decelerated autophagic flux. The consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in zebrafish documented a variable but reproducible phenotype characterized by cerebellum anomalies ranging from depletion of axonal connections to complete atrophy. We provide a detailed clinical characterization of the disorder; the natural history is reported for 2 siblings who have been followed up for >20 years.ConclusionsThis study offers an accurate clinical characterization of this recently recognized neurodegenerative disorder caused by biallelic inactivating mutations in SQSTM1 and links this phenotype to defective selective autophagy.


2017 ◽  
Vol 3 (4) ◽  
pp. e162 ◽  
Author(s):  
Nathan McNeill ◽  
Alessia Nasca ◽  
Aurelio Reyes ◽  
Benjamin Lemoine ◽  
Brandi Cantarel ◽  
...  

Objective:To investigate the genetic etiology of a patient diagnosed with leukoencephalopathy, brain calcifications, and cysts (LCC).Methods:Whole-exome sequencing was performed on a patient with LCC and his unaffected family members. The variants were subject to in silico and in vitro functional testing to determine pathogenicity.Results:Whole-exome sequencing uncovered compound heterozygous mutations in EARS2, c.328G>A (p.G110S), and c.1045G>A (p.E349K). This gene has previously been implicated in the autosomal recessive leukoencephalopathy with thalamus and brainstem involvement and high lactate (LTBL). The p.G110S mutation has been found in multiple patients with LTBL. In silico analysis supported pathogenicity in the second variant. In vitro functional testing showed a significant mitochondrial dysfunction demonstrated by an ∼11% decrease in the oxygen consumption rate and ∼43% decrease in the maximum respiratory rate in the patient's skin fibroblasts compared with the control. EARS2 protein levels were reduced to 30% of normal controls in the patient's fibroblasts. These deficiencies were corrected by the expression of the wild-type EARS2 protein. However, a further unrelated genetic investigation of our patient revealed the presence of biallelic variants in a small nucleolar RNA (SNORD118) responsible for LCC.Conclusions:Here, we report seemingly pathogenic EARS2 mutations in a single patient with LCC with no biochemical or neuroimaging presentations of LTBL. This patient illustrates that variants with demonstrated impact on protein function should not necessarily be considered clinically relevant.ClinicalTrials.gov identifier:NCT00001671.


1995 ◽  
Vol 128 (5) ◽  
pp. 863-877 ◽  
Author(s):  
A Spang ◽  
I Courtney ◽  
K Grein ◽  
M Matzner ◽  
E Schiebel

KAR1 has been identified as an essential gene which is involved in karyogamy of mating yeast cells and in spindle pole body duplication of mitotic cells (Rose, M. D., and G. R. Fink. 1987. Cell. 48:1047-1060). We investigated the cell cycle-dependent localization of the Kar1 protein (Kar1p) and its interaction with other SPB components. Kar1p is associated with the spindle pole body during the entire cell cycle of yeast. Immunoelectron microscopic studies with anti-Kar1p antibodies or with the monoclonal antibody 12CA5 using an epitope-tagged, functional Kar1p revealed that Kar1p is associated with the half bridge or the bridge of the spindle pole body. Cdc31p, a Ca(2+)-binding protein, was previously identified as the first component of the half bridge of the spindle pole body (Spang, A., I. Courtney, U. Fackler, M. Matzner, and E. Schiebel. 1993. J. Cell Biol. 123:405-416). Using an in vitro assay we demonstrate that Cdc31p specifically interacts with a short sequence within the carboxyl terminal half of Kar1p. The potential Cdc31p-binding sequence of Kar1p contains three acidic amino acids which are not found in calmodulin-binding peptides, explaining the different substrate specificities of Cdc31p and calmodulin. Cdc31p was also able to bind to the carboxy terminus of Nuflp/Spc110p, another component of the SPB (Kilmartin, J. V., S. L. Dyos, D. Kershaw, and J. T. Finch. 1993. J. Cell Biol. 123:1175-1184). The association of Kar1p with the spindle pole body was independent of Cdc31p. Cdc31p, on the other hand, was not associated with SPBs of kar1 cells.


Sign in / Sign up

Export Citation Format

Share Document