Elucidating the molecular mechanisms associated with TARS2-related mitochondrial disease

2021 ◽  
Author(s):  
Wen-Qiang Zheng ◽  
Signe Vandal Pedersen ◽  
Kyle Thompson ◽  
Emanuele Bellacchio ◽  
Courtney E French ◽  
...  

Abstract TARS2 encodes human mitochondrial threonyl tRNA-synthetase that is responsible for generating mitochondrial Thr-tRNAThr and clearing mischarged Ser-tRNAThr during mitochondrial translation. Pathogenic variants in TARS2 have hitherto been reported in a pair of siblings and an unrelated patient with an early onset mitochondrial encephalomyopathy and a combined respiratory chain enzyme deficiency in muscle. We here report five additional unrelated patients with TARS2-related mitochondrial diseases, expanding the clinical phenotype to also include epilepsy, dystonia, hyperhidrosis and severe hearing impairment. Additionally, we document seven novel TARS2 variants—one nonsense variant and six missense variants—that we demonstrate are pathogenic and causal of the disease presentation based on population frequency, homology modelling and functional studies that show the effects of the pathogenic variants on TARS2 stability and/or function.

Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 674
Author(s):  
Francesco Capriglia ◽  
Francesca Rizzo ◽  
Giuseppe Petrosillo ◽  
Veronica Morea ◽  
Giulia d’Amati ◽  
...  

The m.3243A>G mutation within the mitochondrial mt-tRNALeu(UUR) gene is the most prevalent variant linked to mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome. This pathogenic mutation causes severe impairment of mitochondrial protein synthesis due to alterations of the mutated tRNA, such as reduced aminoacylation and a lack of post-transcriptional modification. In transmitochondrial cybrids, overexpression of human mitochondrial leucyl-tRNA synthetase (LARS2) has proven effective in rescuing the phenotype associated with m.3243A>G substitution. The rescuing activity resides in the carboxy-terminal domain (Cterm) of the enzyme; however, the precise molecular mechanisms underlying this process have not been fully elucidated. To deepen our knowledge on the rescuing mechanisms, we demonstrated the interactions of the Cterm with mutated mt-tRNALeu(UUR) and its precursor in MELAS cybrids. Further, the effect of Cterm expression on mitochondrial functions was evaluated. We found that Cterm ameliorates de novo mitochondrial protein synthesis, whilst it has no effect on mt-tRNALeu(UUR) steady-state levels and aminoacylation. Despite the complete recovery of cell viability and the increase in mitochondrial translation, Cterm-overexpressing cybrids were not able to recover bioenergetic competence. These data suggest that, in our MELAS cell model, the beneficial effect of Cterm may be mediated by factors that are independent of the mitochondrial bioenergetics.


2018 ◽  
Vol 62 (3) ◽  
pp. 321-340 ◽  
Author(s):  
Veronika Boczonadi ◽  
Giulia Ricci ◽  
Rita Horvath

Diagnosing primary mitochondrial diseases is challenging in clinical practice. Although, defective oxidative phosphorylation (OXPHOS) is the common final pathway, it is unknown why different mtDNA or nuclear mutations result in largely heterogeneous and often tissue -specific clinical presentations. Mitochondrial tRNA (mt-tRNA) mutations are frequent causes of mitochondrial diseases both in children and adults. However numerous nuclear mutations involved in mitochondrial protein synthesis affecting ubiquitously expressed genes have been reported in association with very tissue specific clinical manifestations suggesting that there are so far unknown factors determining the tissue specificity in mitochondrial translation. Most of these gene defects result in histological abnormalities and multiple respiratory chain defects in the affected organs. The clinical phenotypes are usually early-onset, severe, and often fatal, implying the importance of mitochondrial translation from birth. However, some rare, reversible infantile mitochondrial diseases are caused by very specific defects of mitochondrial translation. An unbiased genetic approach (whole exome sequencing, RNA sequencing) combined with proteomics and functional studies revealed novel factors involved in mitochondrial translation which contribute to the clinical manifestation and recovery in these rare reversible mitochondrial conditions.


2020 ◽  
Author(s):  
Giulia Barcia ◽  
Marlène Rio ◽  
Zahra Assouline ◽  
Coralie Zangarelli ◽  
Charles-Joris Roux ◽  
...  

AbstractMitochondrial translation is essential for the biogenesis of the mitochondrial oxidative phosphorylation system (OXPHOS) that synthesizes the bulk of ATP for the cell. Mutations in either mitochondrial DNA or in nuclear genes that encode mitochondrial translation factors can result in impaired OXPHOS biogenesis and mitochondrial diseases with variable clinical presentations.Mutations in the FARS2 gene encoding the mitochondrial phenylalanyl-tRNA synthetase are commonly linked to either early-onset epileptic mitochondrial encephalopathy or spastic paraplegia. Here, we expand the genetic spectrum of FARS2-linked disease with three patients carrying novel compound heterozygous variants in the FARS2 gene and presenting with spastic tetraparesis, axial hypotonia and myoclonic epilepsy in two cases.


2018 ◽  
Vol 97 (12) ◽  
pp. 1297-1305 ◽  
Author(s):  
Q. Chen ◽  
Y. Zhao ◽  
G. Shen ◽  
J. Dai

Hemifacial microsomia (HFM) is a common congenital malformation of the craniofacial region. There are 3 possible pathogenic models of HFM—vascular abnormality and hemorrhage in the craniofacial region, damage to Meckel’s cartilage, and the abnormal development of cranial neural crest cells—and the most plausible hypothesis is the vascular abnormality and hemorrhage model. These 3 models are interrelated, and none of them is completely concordant with all the variable manifestations of HFM. External environmental factors (e.g., thalidomide, triazene, retinoic acid, and vasoactive medications), maternal intrinsic factors (e.g., maternal diabetes), and genetic factors (e.g., the recently reported mutations in OTX2, PLCD3, and MYT1) may lead to HFM through ≥1 of these pathogenic processes. Whole genome sequencing to identify additional pathogenic variants, biological functional studies to understand the exact molecular mechanisms, and additional animal model and clinical studies with large stratified samples to elucidate the pathogenesis of HFM will be necessary. Small-molecule drugs, as well as CRISPR/CAS9-based genetic interventions, for the prevention and treatment of HFM may also be a future research hotspot.


2021 ◽  
Author(s):  
Sarah L Stenton ◽  
Masaru Shimura ◽  
Dorota Piekutowska-Abramczuk ◽  
Peter Freisinger ◽  
Felix Distelmaier ◽  
...  

Background: The spectrum of mitochondrial disease is genetically and phenotypically diverse, resulting from pathogenic variants in over 400 genes, with aerobic energy metabolism defects as a common denominator. Such heterogeneity poses a significant challenge in making an accurate diagnosis, critical for precision medicine. Methods: In an international collaboration initiated by the European Network for Mitochondrial Diseases (GENOMIT) we recruited 2,023 pediatric patients at 11 specialist referral centers between October 2010 and January 2021, accumulating exome sequencing and HPO-encoded phenotype data. An exome-wide search for variants in known and potential novel disease genes, complemented by functional studies, followed ACMG guidelines. Results: 1,109 cases (55%) received a molecular diagnosis, of which one fifth have potential disease-modifying treatments (236/1,109, 21%). Functional studies enabled diagnostic uplift from 36% to 55% and discovery of 62 novel disease genes. Pathogenic variants were identified within genes encoding mitochondrial proteins or RNAs in 801 cases (72%), while, given extensive phenotype overlap, the remainder involved proteins targeted to other cellular compartments. To delineate genotype-phenotype associations, our data was complemented with registry and literature data to develop GENOMITexplorer, an open access resource detailing patient- (n=3,940), gene- (n=427), and variant-level (n=1,492) associations (prokischlab.github.io/GENOMITexplorer/). Conclusions: Reaching a molecular diagnosis was essential for implementation of precision medicine and clinical trial eligibility, underlining the need for genome-wide screening given inability to accurately define mitochondrial diseases clinically. Key to diagnostic success were functional studies, encouraging early acquisition of patient-derived tissues and routine integration of high-throughput functional data to improve patient care by uplifting diagnostic rate.


2021 ◽  
Vol 22 (3) ◽  
pp. 1111
Author(s):  
Sadegheh Haghshenas ◽  
Michael A. Levy ◽  
Jennifer Kerkhof ◽  
Erfan Aref-Eshghi ◽  
Haley McConkey ◽  
...  

A growing number of genetic neurodevelopmental disorders are known to be associated with unique genomic DNA methylation patterns, called episignatures, which are detectable in peripheral blood. The intellectual developmental disorder, X-linked, syndromic, Armfield type (MRXSA) is caused by missense variants in FAM50A. Functional studies revealed the pathogenesis to be a spliceosomopathy that is characterized by atypical mRNA processing during development. In this study, we assessed the peripheral blood specimens in a cohort of individuals with MRXSA and detected a unique and highly specific DNA methylation episignature associated with this disorder. We used this episignature to construct a support vector machine model capable of sensitive and specific identification of individuals with pathogenic variants in FAM50A. This study contributes to the expanding number of genetic neurodevelopmental disorders with defined DNA methylation episignatures, provides an additional understanding of the associated molecular mechanisms, and further enhances our ability to diagnose patients with rare disorders.


2021 ◽  
Vol 11 (3) ◽  
pp. 122-128
Author(s):  
Priya Bhardwaj ◽  
Christoffer Rasmus Vissing ◽  
Niels Kjær Stampe ◽  
Kasper Rossing ◽  
Alex Hørby Christensen ◽  
...  

Background: AARS2 encodes the mitochondrial protein alanyl-tRNA synthetase 2 (MT-AlaRS), an important enzyme in oxidative phosphorylation. Variants in AARS2 have previously been associated with infantile cardiomyopathy. Case summary: A 4-year-old girl died of infantile-onset dilated cardiomyopathy (DCM) in 1996. Fifteen years later, her 21-year-old brother was diagnosed with DCM and ultimately underwent heart transplantation. Initial sequencing of 15 genes discovered no pathogenic variants in the brother at the time of his diagnosis. However, 9 years later re-screening in an updated screening panel of 129 genes identified a homozygous AARS2 (c.1774C > T) variant. Sanger sequencing of the deceased girl confirmed her to be homozygous for the AARS2 variant, while both parents and a third sibling were all found to be unaffected heterozygous carriers of the AARS2 variant. Discussion: This report underlines the importance of repeated and extended genetic screening of elusive families with suspected hereditary cardiomyopathies, as our knowledge of disease-causing mutations continuously grows. Although identification of the genetic etiology in the reported family would not have changed the clinical management, the genetic finding allows genetic counselling and holds substantial value in identifying at-risk relatives.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 300
Author(s):  
Camilla Ceccatelli Berti ◽  
Giulia di Punzio ◽  
Cristina Dallabona ◽  
Enrico Baruffini ◽  
Paola Goffrini ◽  
...  

The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.


Author(s):  
Marisa W. Friederich ◽  
Gabrielle C. Geddes ◽  
Saskia B. Wortmann ◽  
Ann Punnoose ◽  
Eric Wartchow ◽  
...  

Author(s):  
Silvia Martin-Almedina ◽  
Kazim Ogmen ◽  
Ege Sackey ◽  
Dionysios Grigoriadis ◽  
Christina Karapouliou ◽  
...  

Abstract Purpose Several clinical phenotypes including fetal hydrops, central conducting lymphatic anomaly or capillary malformations with arteriovenous malformations 2 (CM-AVM2) have been associated with EPHB4 (Ephrin type B receptor 4) variants, demanding new approaches for deciphering pathogenesis of novel variants of uncertain significance (VUS) identified in EPHB4, and for the identification of differentiated disease mechanisms at the molecular level. Methods Ten index cases with various phenotypes, either fetal hydrops, CM-AVM2, or peripheral lower limb lymphedema, whose distinct clinical phenotypes are described in detail in this study, presented with a variant in EPHB4. In vitro functional studies were performed to confirm pathogenicity. Results Pathogenicity was demonstrated for six of the seven novel EPHB4 VUS investigated. A heterogeneity of molecular disease mechanisms was identified, from loss of protein production or aberrant subcellular localization to total reduction of the phosphorylation capability of the receptor. There was some phenotype–genotype correlation; however, previously unreported intrafamilial overlapping phenotypes such as lymphatic-related fetal hydrops (LRFH) and CM-AVM2 in the same family were observed. Conclusion This study highlights the usefulness of protein expression and subcellular localization studies to predict EPHB4 variant pathogenesis. Our accurate clinical phenotyping expands our interpretation of the Janus-faced spectrum of EPHB4-related disorders, introducing the discovery of cases with overlapping phenotypes.


Sign in / Sign up

Export Citation Format

Share Document