scholarly journals Expression levels of DNA replication and repair genes predict regional somatic repeat instability in the brain but are not altered by polyglutamine disease protein expression or age

2013 ◽  
Vol 23 (6) ◽  
pp. 1606-1618 ◽  
Author(s):  
Amanda G. Mason ◽  
Stephanie Tomé ◽  
Jodie P. Simard ◽  
Randell T. Libby ◽  
Theodor K. Bammler ◽  
...  
2021 ◽  
Vol 15 ◽  
Author(s):  
Evangel Kummari ◽  
Shirley X. Guo-Ross ◽  
Heath S. Partington ◽  
Jennifer Makenzie Nutter ◽  
Jeffrey B. Eells

The transcription factor Nurr1 is a member of the steroid hormone nuclear receptor superfamily. Ablation of Nurr1 expression arrests mesencephalic dopamine neuron differentiation while attenuation of Nurr1 in the subiculum and hippocampus impairs learning and memory. Additionally, reduced Nurr1 expression has been reported in patients with Parkinson’s disease and Alzheimer’s disease. In order to better understand the overall function of Nurr1 in the brain, quantitative immunohistochemistry was used to measure cellular Nurr1 protein expression, across Nurr1 immunoreactive neuronal populations. Additionally, neuronal Nurr1 expression levels were compared between different brain regions in wild-type mice (+/+) and Nurr1 heterozygous mice (+/−). Regional Nurr1 protein was also investigated at various time points after a seizure induced by pentylenetetrazol (PTZ). Nurr1 protein is expressed in various regions throughout the brain, however, a wide range of Nurr1 expression levels were observed among various neuronal populations. Neurons in the parietal and temporal cortex (secondary somatosensory, insular, auditory, and temporal association cortex) had the highest relative Nurr1 expression (100%) followed closely by the claustrum/dorsal endopiriform cortex (85%) and then subiculum (76%). Lower Nurr1 protein levels were found in neurons in the substantia nigra pars compacta and ventral tegmental area (39%) followed by CA1 (25%) and CA3 (19%) of the hippocampus. Additionally, in the parietal and temporal cortex, two distinct populations of high and medium Nurr1 expressing neurons were observed. Comparisons between +/− and +/+ mice revealed Nurr1 protein was reduced in +/− mice by 27% in the parietal/temporal cortex, 49% in the claustrum/dorsal endopiriform cortex, 25% in the subiculum, 33% in substantia nigra pars compacta, 22% in ventral tegmental area, and 21% in CA1 region of the hippocampus. Based on these data, regional mechanisms appear to exist which can compensate for a loss of a Nurr1 allele. Following a single PTZ-induced seizure, Nurr1 protein in the dentate gyrus peaked around 2 h and returned to baseline by 8 h. Since altered Nurr1 expression has been implicated in neurologic disorders and Nurr1 agonists have showed protective effects, understanding regional protein expression of Nurr1, therefore, is necessary to understand how changes in Nurr1 expression can alter brain function.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2122
Author(s):  
Risa Sato ◽  
Kotaro Ohmori ◽  
Mina Umetsu ◽  
Masaki Takao ◽  
Mitsutoshi Tano ◽  
...  

The purpose of the present study was to quantitatively elucidate the levels of protein expression of anti-epileptic-drug (AED) transporters, metabolizing enzymes and tight junction molecules at the blood–brain barrier (BBB) in the focal site of epilepsy patients using accurate SWATH (sequential window acquisition of all theoretical fragment ion spectra) proteomics. Brain capillaries were isolated from focal sites in six epilepsy patients and five normal brains; tryptic digests were produced and subjected to SWATH analysis. MDR1 and BCRP were significantly downregulated in the epilepsy group compared to the normal group. Out of 16 AED-metabolizing enzymes detected, the protein expression levels of GSTP1, GSTO1, CYP2E1, ALDH1A1, ALDH6A1, ALDH7A1, ALDH9A1 and ADH5 were significantly 2.13-, 6.23-, 2.16-, 2.80-, 1.73-, 1.67-, 2.47- and 2.23-fold greater in the brain capillaries of epileptic patients than those of normal brains, respectively. The protein expression levels of Claudin-5, ZO-1, Catenin alpha-1, beta-1 and delta-1 were significantly lower, 1.97-, 2.51-, 2.44-, 1.90- and 1.63-fold, in the brain capillaries of epileptic patients compared to those of normal brains, respectively. Consistent with these observations, leakage of blood proteins was also observed. These results provide for a better understanding of the therapeutic effect of AEDs and molecular mechanisms of AED resistance in epileptic patients.


2021 ◽  
pp. 100996
Author(s):  
Hanqing Liu ◽  
Ziwen Lu ◽  
Xiaofeng Shi ◽  
Lanlan Liu ◽  
Peishan Zhang ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qilu Wei ◽  
Ning Kong ◽  
Xiaohui Liu ◽  
Run Tian ◽  
Ming Jiao ◽  
...  

Abstract Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 342
Author(s):  
Lihi Gershon ◽  
Martin Kupiec

Acetylation on lysine 56 of histone H3 of the yeast Saccharomyces cerevisiae has been implicated in many cellular processes that affect genome stability. Despite being the object of much research, the complete scope of the roles played by K56 acetylation is not fully understood even today. The acetylation is put in place at the S-phase of the cell cycle, in order to flag newly synthesized histones that are incorporated during DNA replication. The signal is removed by two redundant deacetylases, Hst3 and Hst4, at the entry to G2/M phase. Its crucial location, at the entry and exit points of the DNA into and out of the nucleosome, makes this a central modification, and dictates that if acetylation and deacetylation are not well concerted and executed in a timely fashion, severe genomic instability arises. In this review, we explore the wealth of information available on the many roles played by H3K56 acetylation and the deacetylases Hst3 and Hst4 in DNA replication and repair.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 302 ◽  
Author(s):  
Xin Zhang ◽  
Yao Qin ◽  
Zhaohai Pan ◽  
Minjing Li ◽  
Xiaona Liu ◽  
...  

The main chemical component of cannabis, cannabidiol (CBD), has been shown to have antitumor properties. The present study examined the in vitro effects of CBD on human gastric cancer SGC-7901 cells. We found that CBD significantly inhibited the proliferation and colony formation of SGC-7901 cells. Further investigation showed that CBD significantly upregulated ataxia telangiectasia-mutated gene (ATM) and p53 protein expression and downregulated p21 protein expression in SGC-7901 cells, which subsequently inhibited the levels of CDK2 and cyclin E, thereby resulting in cell cycle arrest at the G0–G1 phase. In addition, CBD significantly increased Bax expression levels, decreased Bcl-2 expression levels and mitochondrial membrane potential, and then upregulated the levels of cleaved caspase-3 and cleaved caspase-9, thereby inducing apoptosis in SGC-7901 cells. Finally, we found that intracellular reactive oxygen species (ROS) increased after CBD treatment. These results indicated that CBD could induce G0–G1 phase cell cycle arrest and apoptosis by increasing ROS production, leading to the inhibition of SGC-7901 cell proliferation, thereby suggesting that CBD may have therapeutic effects on gastric cancer.


Sign in / Sign up

Export Citation Format

Share Document