scholarly journals Pirfenidone attenuates synovial fibrosis and postpones the progression of osteoarthritis by anti-fibrotic and anti-inflammatory properties in vivo and in vitro

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qilu Wei ◽  
Ning Kong ◽  
Xiaohui Liu ◽  
Run Tian ◽  
Ming Jiao ◽  
...  

Abstract Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.

2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Mouli Tian ◽  
Mei Yang ◽  
Zhenjie Li ◽  
Yiru Wang ◽  
Wei Chen ◽  
...  

Abstract We aimed to investigate the anti-inflammatory role of fluoxetine, a selective serotonin reuptake inhibitor, in microglia (MG) and the mechanisms under oxygen glucose deprivation/reoxygenation (OGD/R). An OGD/R model on BV-2 cells was used for the study of microglia under ischemia/reperfusion injury in ischemic stroke. Lentiviral transfection was applied to knock down IκB-α. Enzyme-linked immunosorbent assay (ELISA) was used for detecting levels of TNF-α, IL-1β, and IL-6, and real-time PCR was used to assess the expression of IκB-α protein. Western blotting was applied to analyze NF-κB-signaling related proteins and Cell Counting Kit-8 (CCK-8) was used for assessing cell viability. Molecular docking and drug affinity responsive target stability (DARTS) assay were used for the detection of the interaction between IκB-α and fluoxetine. We found that fluoxetine decreased the levels of TNF-α, IL-1β, and IL-6 in supernatant as well as NF-κB subunits p65 and p50 in BV-2 cells under OGD/R. Fluoxetine significantly increased the level of IκB-α through the inhibition of IκB-α ubiquitylation and promoted the bonding of IκB-α and fluoxetine in BV-2 cells under OGD/R. Knocking down IκB-α attenuated the decreasing effect of TNF-α, IL-1β, and IL-6 as well as p65 and p50 in BV-2 cells under OGD/R led to by fluoxetine. In conclusion, our present study demonstrated the anti-inflammatory role of fluoxetine and its mechanisms related to the modulation of NF-κB-related signaling in MG under ischemia/reperfusion challenge.


2021 ◽  
Author(s):  
Yuhua Zhang

The pathogenesis of diabetic nephropathy (DN) has not been fully elucidated. MicroRNAs play an important role in the onset and development of DN renal fibrosis. Thus, this study aimed to investigate the effect of miR-92d-3p on the progression of DN renal fibrosis. We used qRT-PCR to detect the expression levels of miR-92d-3p in the kidneys of patients with DN. Then, after transfecting lentiviruses containing miR-92d-3p into the kidneys of a DN mouse model and HK-2 cell line, we used qRT-PCR to detect the expression levels of miR-92d-3p, C3, HMGB1, TGF-β1, α-SMA, E-cadherin, and Col Ⅰ. The expression levels of IL-1β, IL-6, and TNF-α in the HK-2 cells were detected through enzyme-linked immunosorbent assay, and Western blotting and immunofluorescence were used in detecting the expression levels of fibronectin, α-SMA, E-cadherin, and vimentin. Results showed that the expression levels of miR-92d-3p in the kidney tissues of patients with DN and DN animal model mice decreased, and C3 stimulated HK-2 cells to produce inflammatory cytokines. The C3/HMGB1/TGF-β1 pathway was activated, and EMT was induced in the HK-2 cells after human recombinant C3 and TGF-β1 protein were added. miR-92d-3p inhibited inflammatory factor production by C3 in the HK-2 cells and the activation of the C3/HMGB1/TGF-β1 pathway and EMT by C3 and TGF-β1. miR-92d-3p suppressed the progression of DN renal fibrosis by inhibiting the activation of the C3/HMGB1/TGF-β1 pathway and EMT.


2021 ◽  
Author(s):  
Sanaz Jamshidi ◽  
Mohammad Sofiabadi ◽  
Mina Eslami ◽  
Farshad Foroughi

Abstract Background: Consumption of herbal flavonoids instead of chemical drugs has increased in recent years due to fewer side effects and affordability. In this study, the effect of apigenin was investigated on inflammation induced by lipopolysaccharide in male rat's serum by measuring the pro-inflammatory cytokines, i.e., IL-1β, IL-6, and TNF-α.Methods: 90 male Wistar rats weighing 200 ±2 grams were used and divided into control, sham (solvent), and positive control (dexamethasone 15 mg/kg. ip), and 3 experimental groups which received 5, 15 or 30 mg/kg of apigenin, intraperitoneally. In 30 minutes after interventions, lipopolysaccharide (LPS) [30 μg/kg. ip] was injected. Then, at 4, 12- and 24-hour intervals, rats were anesthetized, and blood samples were prepared intracardially. Samples were centrifuged, and serums were separated and stored at -80 ° C. Measurement of IL-1β, IL-6, and TNF-α were conducted by the enzyme-linked immunosorbent assay (ELISA) method. Data were analyzed using the SPSS software version 19.Results: Pre-injection of apigenin at 5 mg/kg dosage were reduced TNF-α and IL-1β levels at 24-hours after LPS injection, compared to control (for both P <0.05). Pre-injection of 15 mg/kg of apigenin was reduced IL-6 level at 24-hours after LPS injection (P <0.05). Pre-injection of 30 mg/kg of apigenin were reduced TNF-α level at 4- (P <0.05), 12- (P <0.01) and 24- (P <0.01) hours, IL-1β level at 24-hours (P <0.01), and IL-6 level at 4- (P <0.05) and 24- (P <0.01) hours after LPS injection.Conclusions: Apigenin reduces proinflammatory cytokines in serum in acute inflammation induction. This impact is close to the dexamethasone effect as an anti-inflammatory steroid drug.


2021 ◽  
Vol 22 (20) ◽  
pp. 11082
Author(s):  
Pei-Wei Weng ◽  
Vijesh Kumar Yadav ◽  
Narpati Wesa Pikatan ◽  
Iat-Hang Fong ◽  
I-Hsin Lin ◽  
...  

Osteoarthritis (OA) is a common articular disease manifested by the destruction of cartilage and compromised chondrogenesis in the aging population, with chronic inflammation of synovium, which drives OA progression. Importantly, the activated synovial fibroblast (AF) within the synovium facilitates OA through modulating key molecules, including regulatory microRNAs (miR’s). To understand OA associated pathways, in vitro co-culture system, and in vivo papain-induced OA model were applied for this study. The expression of key inflammatory markers both in tissue and blood plasma were examined by qRT-PCR, western blot, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assays. Herein, our result demonstrated, AF-activated human chondrocytes (AC) exhibit elevated NFκB, TNF-α, IL-6, and miR-21 expression as compared to healthy chondrocytes (HC). Importantly, AC induced the apoptosis of HC and inhibited the expression of chondrogenesis inducers, SOX5, TGF-β1, and GDF-5. NFκB is a key inflammatory transcription factor elevated in OA. Therefore, SC75741 (an NFκB inhibitor) therapeutic effect was explored. SC75741 inhibits inflammatory profile, protects AC-educated HC from apoptosis, and inhibits miR-21 expression, which results in the induced expression of GDF-5, SOX5, TGF-β1, BMPR2, and COL4A1. Moreover, ectopic miR-21 expression in fibroblast-like activated chondrocytes promoted osteoblast-mediated differentiation of osteoclasts in RW264.7 cells. Interestingly, in vivo study demonstrated SC75741 protective role, in controlling the destruction of the articular joint, through NFκB, TNF-α, IL-6, and miR-21 inhibition, and inducing GDF-5, SOX5, TGF-β1, BMPR2, and COL4A1 expression. Our study demonstrated the role of NFκB/miR-21 axis in OA progression, and SC75741′s therapeutic potential as a small-molecule inhibitor of miR-21/NFκB-driven OA progression.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qiu-Yue Wang ◽  
Na Zhang ◽  
Shu-Yu Liu ◽  
Xi-Hong Jiang ◽  
Shu-Min Liu

Huangqi Chifeng Tang (HQCFT), a traditional Chinese formula of three herbs, has been used to treat cerebral infarction (CI). Saposhnikoviae Radix (SR) was designed as a guiding drug for HQCFT to improve its angiogenic and anti-inflammatory effects. In this study, TTC staining was used to detect the area of CI. H&E staining was used to detect the histopathologic changes in the cerebral tissue. Western blotting was performed to detect the protein expression of NLRP3, caspase 1, IL-1β, IL-6, TNF-α, MMP-9, VEGF, and VEGFR2 in cerebral tissue. Immunohistochemistry was used to detect the protein expression of MMP-9, VEGF, and VEGFR2. The contents of HIF-1α, NLRP3, caspase 1, IL-1β, IL-6, and TNF-α in the serum were determined by ELISA. Our study showed that HQCFT and HQCFT-SR could improve the pathological condition and reduce the infarcted area of the brain tissue in a rat model. In addition, HQCFT and HQCFT-SR significantly decreased the expression levels and serum contents of NLRP3, caspase 1, IL-1β, IL-6, and TNF-α; increased the expression levels of the VEGF and VEGFR2 proteins; and obviously reduced the serum content of HIF-1α. Importantly, the cytokines in brain tissue and serum from the HQCFT group exhibited better efficacy than those from the HQCFT-SR group. HQCFT exerted significant angiogenic and anti-inflammatory effects in rats subjected to middle cerebral artery occlusion (MCAO); these effects can be attributed to the guiding and enhancing effect of SR.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3093 ◽  
Author(s):  
Jingyi Hou ◽  
Yu Gu ◽  
Shuai Zhao ◽  
Mengqi Huo ◽  
Shifeng Wang ◽  
...  

Aurantio-obtusin, an anthraquinone compound, isolated from dried seeds of Cassia obtusifolia L. (syn. Senna obtusifolia; Fabaceae) and Cassia tora L. (syn. Senna tora). Although the biological activities of Semen Cassiae have been reported, the anti-inflammatory mechanism of aurantio-obtusin, its main compound, on RAW264.7 cells, remained unknown. We investigated the anti-inflammatory effect of aurantio-obtusin on lipopolysaccharide- (LPS)-induced RAW264.7 cells in vitro and elucidated the possible underlying molecular mechanisms. Nitric oxide production (NO) and prostaglandin E2 (PGE2) were measured by the Griess colorimetric method and enzyme-linked immunosorbent assay (ELISA), respectively. Protein expression levels of cyclooxygenase 2 (COX-2) were monitored by cell-based ELISA. Interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) synthesis were analyzed using ELISA. The mRNA expression of nitric oxide synthase (iNOS), COX-2, and the critical pro-inflammatory cytokines (IL-6 and TNF-α) were detected by quantitative real-time PCR. Aurantio-obtusin significantly decreased the production of NO, PGE2, and inhibited the protein expression of COX-2, TNF-α and IL-6, which were similar to those gene expression of iNOS, COX-2, TNF-α and IL-6 (p < 0.01). Consistent with the pro-inflammatory gene expression, the Aurantio-obtusin efficiently reduced the LPS-induced activation of nuclear factor-κB in RAW264.7 cells. These results suggested that aurantio-obtusin may function as a therapeutic agent and can be considered in the further development of treatments for a variety of inflammatory diseases. Further studies may provide scientific evidence for the use of aurantio-obstusin as a new therapeutic agent for inflammation-related diseases.


2019 ◽  
Vol 39 (10) ◽  
Author(s):  
Lingjuan Cui ◽  
Xiaoyan Jiang ◽  
Chengjun Zhang ◽  
Danxia Li ◽  
Shengqiang Yu ◽  
...  

Abstract Many clinical studies have been conducted on ketamine-associated cystitis. However, the underlying mechanisms of ketamine-associated cystitis still remain unclear. Bladder tissues of rats were stained by Hematoxylin and Eosin (HE). The viability of human uroepithelial cells (SV-HUC-1 cells) was determined by cell counting kit-8 (CCK-8). Apoptosis and reactive oxygen species (ROS) were examined by flow cytometry. Additionally, the expressions of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β and IL-18 were respectively determined by reverse transcription quantitative (RTq)-PCR and enzyme-linked immunosorbent assay (ELISA). The mRNA and protein levels of B-cell lymphoma/leukemia-2 (Bcl2), Bcl-2-associated X protein (Bax), cleaved caspase 3, glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP), NOD-like receptor 3 (NLRP3), thioredoxin-interacting protein (TXNIP), Catalase and MnSOD were examined by RT-qPCR and Western blot. Small interfering RNA target TXNIP transfection was performed using Lipofectamine™ 2000. We found that ketamine effectively damaged bladder tissues of rats and promoted apoptosis through regulating the expression levels of GRP78, CHOP, Bcl-2, Bax and cleaved Caspase-3 proteins in vivo and in vitro. NLRP3 inflammatory body and TXNIP were activated by ketamine, which was supported by the changes in TNF-α, IL-6, IL-1 and IL-18 in vivo and in vitro. Furthermore, knocking down TXNIP reversed the effects of ketamine on apoptosis and NLRP3 inflammatory body in SV-HUC-1 cells. Meanwhile, the changes of Catalase and MnSOD showed that ROS was enhanced by ketamine, however, such an effect was ameliorated by down-regulation of TXNIP in SV-HUC-1 cells. Ketamine promoted cell apoptosis and induced inflammation in vivo and in vitro by regulating NLRP3/TXNIP aix.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255344
Author(s):  
Sun Young Jang ◽  
Soo Hyun Choi ◽  
Don Kikkawa ◽  
Eun Jig Lee ◽  
Jin Sook Yoon

Purpose The role of fibroblast growth factor (FGF) in orbital fibroblasts (OFs) is rarely known. In this study, we investigated the effect of FGF10 on fibrosis and the inflammation mechanism of Graves′ orbitopathy (GO). Methods Orbital tissue from GO (n = 15) and non-GO (n = 15) was obtained for this study. The mRNA and protein expression levels of FGF10 and FGF receptor 2b (FGFR2b) in orbital tissue were determined by real-time polymerase chain reaction, western blot analysis, and confocal microscopy. The effects of FGF10 on transforming growth factor (TGF)-β1 induced fibrotic proteins and interleukin (IL)-1β- or tumor necrosis factor (TNF)-α- induced inflammatory proteins were investigated using recombinant human (rh) FGF10 and small interfering (si) RNA transfection against FGF10. Results FGF10 and FGFR2b mRNA expression levels were significantly lower in GO orbital tissues than in non-GO orbital tissues (p = 0.009 and 0.005, respectively). Immunostaining of FGF10 in orbital adipose tissues showed differences in FGF10 expression between GO and control samples. Immunostaining of FGF10 was very weak in the orbital tissues of GO patients. TGF-β1-induced fibronectin, collagen Iα, α-smooth muscle actin protein expression in GO OFs was attenuated by rhFGF10 treatment and increased by knockdown of FGF10 via siFGF10 transfection. Similarly, IL-1β- or TNF-α-induced IL-6, IL-8, and cyclooxygenase-2 protein production in GO OFs was either blocked by rhFGF10 treatment or further upregulated by inhibition of FGF10 via siFGF10 transfection. Conclusions Our data demonstrate that FGF10 has beneficial effects on the inflammatory and fibrotic mechanisms of GO in primary cultured OFs, providing new insights into GO pathology and the discovery of FGF10 as a promising novel therapeutic application for the treatment of GO.


2020 ◽  
Vol 18 ◽  
pp. 205873922093528
Author(s):  
Jorge Xool-Tamayo ◽  
Ivan Chan-Zapata ◽  
Víctor Ermilo Arana-Argaez ◽  
Fabiola Villa-de la Torre ◽  
Julio César Torres-Romero ◽  
...  

Introduction Propolis has been used traditionally for different human diseases and even recently as dental biomaterials because of its antibacterial, antimycotic, and anti-inflammatory properties. However, a proper correlation between in vitro and in vivo anti-inflammatory properties has not been clearly established. Methods The composition of propolis was determined by high-performance liquid chromatography–ultraviolet mass spectrometry (HPLC-UV-MS). Viability of ethanolic propolis solution was evaluated by thiazolyl blue tetrazolium bromide (MTT) assay on murine macrophages. The anti-inflammatory properties were assessed both in vitro through the enzyme-linked immunosorbent assay (ELISA) quantification of various cytokines and in vivo by induced edemas. Results Chemical analysis showed pinocembrin, pinobanksin-3-O-acetate, and pinobanksin-3-O-propionate as the main components of propolis. Macrophage viability was high (106%) when propolis was used up to 50 µg/mL. ELISA studies showed a reduction in the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) up to 145 pg/mL, 350 pg/mL, and 210 pg/mL, respectively, while the anti-inflammatory cytokines (IL-10 and IL-4) were increased up to 833 pg/mL and 446 pg/mL. Finally, edema was reduced on paw and ear mice by 9% and 22%, respectively. Conclusion Mayan propolis has strong in vitro anti-inflammatory properties without compromising macrophage viability, resulting in a low-to-mild in vivo anti-inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document