O-145 Green Tea catechins EGCG and pro-drug of EGCG (Pro-EGCG) inhibit endometriosis through targeting molecules regulating macrophages and B cells

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
S W Hung ◽  
M Gaetani ◽  
Z Y R Tan ◽  
R Z Zhang ◽  
R A Zubarev ◽  
...  

Abstract Study question What are the therapeutic targets and mechanisms of green tea EGCG and Pro-EGCG in treating endometriosis? Summary answer EGCG and Pro-EGCG have unique molecular targets to regulate interactions of B cells, macrophages and endometriotic cells and limit the growth and development of endometriosis. What is known already Current treatments of endometriosis are mainly hormonal suppression and surgical ablation or removal. Our previous studies showed EGCG significantly inhibits development of experimental endometriosis in mice. Pro-EGCG is more effective than EGCG in term of anti-endometriosis, anti-angiogenesis and anti-oxidation (Wang, et. al., 2013; Xu, et al., 2011). Dysfunctional immunological activities of macrophages and B cells were found in women with endometriosis. The molecular targets, underlying mechanism and differential therapeutic efficacy of EGCG and Pro-EGCG, as well as their anti-inflammatory activities are still not known. Study design, size, duration Multiplexed Proteome Integral Stability Alteration (PISA) assay (Gaetani et al.,2019), followed by MS/MS was applied to identify the molecular targets of EGCG and Pro-EGCG in endometriotic cells. Pharmacological studies of EGCG and Pro-EGCG on endometriotic cell line and endometriosis models in mice were performed to characterise their anti-endometriosis and anti-inflammatory effects. Gene silencing and over-expression experiments were conducted to confirm the immunoregulatory mechanisms. Participants/materials, setting, methods Endometriotic (Hs832(C)T) cell lines in culture and lysate were treated for chemical proteomics analysis. SiRNA and overexpression vectors were transfected to the cells in vitro and lesions in vivo. Hs832(C).T, monocytic cells (THP-1) and control B cell (Raji null) lines were used for co-culture assays to study the interaction between endometriotic and immune cells in vitro. Endometriosis mice model was established for immunostaining and microarray analysis of lesions to characterise the molecular pathways in vivo. Main results and the role of chance MTDH and PXK were the strongest and most differential targets of EGCG and Pro-EGCG in both cells lysate and cell culture of Hs832(C).T, respectively. Gene silencing and overexpression of the protein targets in vitro and in vivo significantly altered expressions of downstream proteins, including BLK and EGF after PXK, and MYC and AKT after MTDH, as well as endometriosis-related genes such as VEGFC and MMP9. Co-culture assays of Hs832(C).T with Raji null or THP-1 induced macrophages showed that expressions of PXK, MTDH, downstream targets, and immune-related genes were significantly increased after incubation of recombinant proteins, but were significantly decreased after EGCG and Pro-EGCG treatment. M1 and M2 macrophages, as well as B cells were significantly reduced after the treatments in vitro and in vivo. Double immunofluorescent staining of lesions showed that CD68, CD163 or CD20 co-expressed with MTDH, PXK and downstream targets, and numbers of the co-expressed cells were significantly reduced after treatments in vivo. Microarray experiment further identified the upstream and downstream genes of MTDH or PXK contributing to the growth and development of endometriosis. Limitations, reasons for caution Results of this pharmacological and mechanistic study require clinical samples to validate the anti-endometriosis effects of EGCG and Pro-EGCG. Effects of other potential pharmaceuticals targeting the macrophages and B cells on endometriosis are needed. Wider implications of the findings The findings provide pharmacological and mechanistic data for future development of EGCG and Pro-EGCG as new treatment for endometriosis. This study shows that macrophage and B cell could be potential therapeutic targets for treatment of endometriosis, which opens up new horizon for the novel immunotherapy for endometriosis. Trial registration number NA

2002 ◽  
Vol 9 (2) ◽  
pp. 86-95 ◽  
Author(s):  
Denise A. Kaminski ◽  
John J. Letterio ◽  
Peter D. Burrows

Transforming growth factor β (TGFβ) can inhibit thein vitroproliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/-mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1-pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell developmentin vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.


1997 ◽  
Vol 272 (3) ◽  
pp. C950-C956 ◽  
Author(s):  
W. Fang ◽  
K. A. Nath ◽  
M. F. Mackey ◽  
R. J. Noelle ◽  
D. L. Mueller ◽  
...  

Signaling through the CD40 receptor on human and murine B lymphocytes is necessary for germinal center formation and immunoglobulin class switching in vivo and rescues B cells from apoptosis triggered by cross-linking of surface immunoglobulin M in vitro. Ligation of CD40 on the immature mouse B cell line WEHI-231 with recombinant CD40 ligand (CD40L) was found to protect cells from apoptosis after gamma irradiation, as well as that following treatment with the sphingomyelin ceramide or compounds that deplete intracellular glutathione. CD40 signaling led to a rapid increase in the expression of the apoptosis inhibitory protein Bcl-xL. In addition, the apoptosis-induced accumulation of intracellular oxidants in WEHI-231 B cells was rapidly diminished by CD40 crosslinking. This antioxidant response was observed within 1 h and coincided with a preservation of intracellular thiols. These findings indicate that CD40 signaling induces a generalized cellular resistance to apoptosis characterized by an upregulation of Bcl-xL and changes in the intracellular redox potential.


2005 ◽  
Vol 79 (12) ◽  
pp. 7355-7362 ◽  
Author(s):  
Michelle A. Swanson-Mungerson ◽  
Robert G. Caldwell ◽  
Rebecca Bultema ◽  
Richard Longnecker

ABSTRACT A significant percentage of the population latently harbors Epstein-Barr virus (EBV) in B cells. One EBV-encoded protein, latent membrane protein 2A (LMP2A), is expressed in tissue culture models of EBV latent infection, in human infections, and in many of the EBV-associated proliferative disorders. LMP2A constitutively activates proteins involved in the B-cell receptor (BCR) signal transduction cascade and inhibits the antigen-induced activation of these proteins. In the present study, we investigated whether LMP2A alters B-cell receptor signaling in primary B cells in vivo and in vitro. LMP2A does not inhibit antigen-induced tolerance in response to strong stimuli in an in vivo tolerance model in which B cells are reactive to self-antigen. In contrast, LMP2A bypasses anergy induction in response to low levels of soluble hen egg lysozyme (HEL) both in vivo and in vitro as determined by the ability of LMP2A-expressing HEL-specific B cells to proliferate and induce NF-κB nuclear translocation after exposure to low levels of antigen. Furthermore, LMP2A induces NF-κB nuclear translocation independent of BCR cross-linking. Since NF-κB is required to bypass tolerance induction, this LMP2A-dependent NF-κB activation may complete the tolerogenic signal induced by low levels of soluble HEL. Overall, the findings suggest that LMP2A may not inhibit BCR-induced signals under all conditions as previously suggested by studies with EBV immortalized B cells.


2018 ◽  
Vol 19 (9) ◽  
pp. 2522 ◽  
Author(s):  
Hirotake Kasai ◽  
Taku Kuwabara ◽  
Yukihide Matsui ◽  
Koichi Nakajima ◽  
Motonari Kondo

Interleukin-7 (IL-7) is essential for lymphocyte development. To identify the functional subdomains in the cytoplasmic tail of the IL-7 receptor (IL-7R) α chain, here, we constructed a series of IL-7Rα deletion mutants. We found that IL-7Rα-deficient hematopoietic progenitor cells (HPCs) gave rise to B cells both in vitro and in vivo when a wild-type (WT) IL-7Rα chain was introduced; however, no B cells were observed under the same conditions from IL-7Rα-deficient HPCs with introduction of the exogenous IL-7Rα subunit, which lacked the amino acid region at positions 414–441 (d414–441 mutant). Signal transducer and activator of transcription 5 (STAT5) was phosphorylated in cells with the d414–441 mutant, similar to that in WT cells, in response to IL-7 stimulation. In contrast, more truncated STAT5 (tSTAT5) was generated in cells with the d414–441 mutant than in WT cells. Additionally, the introduction of exogenous tSTAT5 blocked B lymphopoiesis but not myeloid cell development from WT HPCs in vivo. These results suggested that amino acids 414–441 in the IL-7Rα chain formed a critical subdomain necessary for the supportive roles of IL-7 in B-cell development.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2981-2989 ◽  
Author(s):  
M Schena ◽  
LG Larsson ◽  
D Gottardi ◽  
G Gaidano ◽  
M Carlsson ◽  
...  

Abstract The bcl-2 gene is translocated into the Ig loci in about 80% of human follicular lymphomas and in 10% of B-type chronic lymphocytic leukemias (B-CLL), resulting in a high level of expression. We have compared the expression of bcl-2 transcripts and protein in B-CLL cells in their normal equivalent CD5+ B cells and in normal B-cell populations representative of different in vivo and in vitro stages of activation and proliferation. We report here that bcl-2 was expressed in 11 of 11 cases of CD5+ B-CLL clones, contrasting with the absent expression in normal CD5+ B cells. Activation of 173 and 183 B-CLL cells by phorbol esters (12-O-tetradecanoylphorbol-13-acetate [TPA]) to IgM secretion without concomitant DNA synthesis resulted in a rapid but transient downregulation of bcl-2 expression. In contrast, the reduction of bcl-2 at both the messenger RNA and protein levels was sustained after mitogenic stimulation, suggesting that bcl-2 expression and proliferation are inversely related in these cells. This notion was further supported by immunocytochemical analysis showing that bcl-2 was primarily expressed in small resting lymphocytes and in cells differentiating to the plasma cell stage, but less expressed in Ki67- positive proliferating B blasts. Moreover, it was also supported by the low level of bcl-2 in exponentially growing Epstein-Barr virus-carrying lymphoblastoid and B-CLL cell lines. The regulation of bcl-2 expression in B-CLL resembled that of normal tonsillar follicular B cells, in which a high level of expression was found in resting mantle zone B cells but not in the proliferating germinal center B cells. Based on these findings and the role of bcl-2 in maintaining B-cell memory, we propose that the phenotype of B-CLL cells corresponds to a mantle zone memory-type B cell.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 204 ◽  
Author(s):  
Cornelia Barnowski ◽  
Nicole Kadzioch ◽  
Dominik Damm ◽  
Huimin Yan ◽  
Vladimir Temchura

The great advantage of virus-like particle (VLP) nano-vaccines is their structural identity to wild-type viruses, ensuring that antigen-specific B-cells encounter viral proteins in their natural conformation. “Wild-type” viral nanoparticles can be further genetically or biochemically functionalized with biomolecules (antigens and adjuvants). Flagellin is a potent inducer of innate immunity and it has demonstrated adjuvant effectiveness due to its affinity for toll-like receptor 5 (TLR5). In contrast to most TLR ligands, flagellin is a protein and can induce an immune response against itself. To avoid side-effects, we incorporated a less inflammatory and less immunogenic form of flagellin as an adjuvant into HIV-based nanoparticle B-cell-targeting vaccines that display either the HIV-1 envelope protein (Env) or a model antigen, hen egg lysozyme (HEL). While flagellin significantly enhanced HEL-specific IgG responses, anti-Env antibody responses were suppressed. We demonstrated that flagellin did not activate B-cells directly in vitro, but might compete for CD4+ T-cell help in vivo. Therefore, we hypothesize that in the context of VLP-based B-cell nano-vaccines, flagellin serves as an antigen itself and may outcompete a less immunogenic antigen with its antibody response. In contrast, in combination with a strong immunogen, the adjuvant activity of flagellin may dominate over its immunogenicity.


2000 ◽  
Vol 191 (5) ◽  
pp. 883-890 ◽  
Author(s):  
Keli L. Hippen ◽  
Lina E. Tze ◽  
Timothy W. Behrens

Clonal anergy of autoreactive B cells is a key mechanism regulating tolerance. Here, we show that anergic B cells express significant surface levels of CD5, a molecule normally found on T cells and a subset of B-1 cells. Breeding of the hen egg lysozyme (HEL) transgenic model for B cell anergy onto the CD5 null background resulted in a spontaneous loss of B cell tolerance in vivo. Evidence for this included elevated levels of anti-HEL immunoglobulin M (IgM) antibodies in the serum of CD5−/− mice transgenic for both an HEL-specific B cell receptor (BCR) and soluble lysozyme. “Anergic” B cells lacking CD5 also showed enhanced proliferative responses in vitro and elevated intracellular Ca2+ levels at rest and after IgM cross-linking. These data support the hypothesis that CD5 negatively regulates Ig receptor signaling in anergic B cells and functions to inhibit autoimmune B cell responses.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2-2 ◽  
Author(s):  
Masumichi Saito ◽  
Ryan T. Phan ◽  
Herbert C. Morse ◽  
Laura Pasqualucci ◽  
Riccardo Dalla-Favera

Abstract Deregulated expression of the proto-oncogenes BCL6 and c-MYC caused by chromosomal translocation or somatic hypermutation is common in non-Hodgkin B cell lymphoma derived from germinal center (GC) B cells, including diffuse large cell lymphoma (DLBCL) and Burkitt lymphoma (BL). Normal GC B cells express BCL6, whereas, surprisingly, they do not express c-MYC, suggesting that the expression of this oncogene in BL and DLBCL (20% of cases) is ectopic (Klein, U. et al. Proc Natl Acad Sci U S A100, 2639–2644, 2003). Here we report that c-MYC is absent in proliferating GC B cells because it is transcriptionally suppressed by BCL6, as demonstrated by the presence of specific BCL6 binding sites in the c-MYC promoter region and by chromatin immunoprecipitation experiments showing that BCL6 is bound to these sites in vivo. Thus, c-MYC escapes BCL6-mediated suppression in lymphoma leading to the co-expression of the two transcription factors, an event never observed in immunohistochemical and gene expression profile analysis of normal GC B cells. Surprisingly, co-immunoprecipitation experiments and in vitro binding experiments indicate that, when co-expressed, BCL6 and c-MYC are physically bound in a novel complex detectable in DLBCL and BL cell lines as well as in primary lymphoma cases. The formation of the BCL6/c-MYC complex has several significant functional consequences on the function of both c-MYC and BCL6: 1) a two fold, BCL6-binding dependent increase in c-MYC half-life, an event that has been shown to contribute to its oncogenic activation; 2) a synergistic increase in the ability of both BCL6 and c-MYC to suppress MIZ1-activated transcription of the p21CIP cell cycle arrest gene; 3) MYC-dependent inhibition of BCL6 acetylation by p300, an event that physiologically inactivates BCL6 via c-MYC-mediated recruitment of HDAC. Notably, the pathologic co-expression of c-MYC and BCL6 was shown to have pathologic consequences in vivo, since double transgenic BCL6/c-MYC mice display accelerated lymphoma development and the appearance of a novel GC-derived tumor phenotype not recognizable in single transgenic animals and containing the pathologic c-MYC/BCL6 complex. Thus, the pathologic co-expression and illegitimate physical interaction of BCL6 and c-MYC leads to an increase in the constitutive activity of both oncogenes. These results identify a novel mechanism of oncogenic function for BCL6 and c-MYC and a novel tumor-specific protein complex of potential therapeutic interest.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 935-935
Author(s):  
Yvonne A. Efebera ◽  
Tahamtan Ahmadi ◽  
Amanda Flies ◽  
David H. Sherr

Abstract Background: An increased understanding of the requirements for antigen presentation has encouraged development of cell-based cancer vaccines. Trials using dendritic cells (DC) as antigen presenting cells (APC) for immunotherapy of several malignancies have shown considerable success. However, the difficulty in generating large numbers of DC required for these immunizations has led to the search for alternative APC. One such candidate is the CD40 ligand (CD40L)-activated B cell, populations of which can readily be expanded in vitro. To be an effective vehicle for antigen presentation to T cells, CD40L-activated B cells must be capable of migrating to secondary lymphoid organs. Therefore, CD40L-activated B cell migration following subcutaneous or intravenous injection was evaluated. Methods: Splenic B cells from GFP transgenic mice were activated with CD40L + IL-4 and expanded in vitro prior to i.v. or s.c. injection of 3–4 x 107 into C57BL/6 mice. Recipient mice were sacrificed 2 hrs or 1–14 days thereafter and the percentage of GFP+/B220+ B cells quantified in spleens and lymph nodes by flow cytometry. Localization of these cells within lymphoid organs was determined by immunohistochemistry. In some experiments, activated C57BL/6 B cells were labeled with carboxy fluorescein succinimidyl ester (CFSE) to evaluate cell growth in vivo. Results: Murine B cell populations were readily expanded by culture on CD40L-transfected L cells in the presence of IL-4. CD40L-activated B cells expressed high levels of CD80, CD86, and LFA-1 but decreased levels of L-selectin relative to naive cells. Following i.v. injection, activated B cells were detected in spleens and lymph nodes within 1 day. Peak concentrations of activated B cells were noted in spleens and lymph nodes on days 7 (4.8% of injected cells) and 10 (1.25% of injected cells) respectively, suggesting expansion of the activated B cell population in vivo. Naive B cells injected i.v. were detected within 1 day but their number declined precipitously thereafter. Following s.c. injection, peak levels of CD40L-activated B cells were noted on day 5 (spleens) and day 7 (lymph nodes). As determined by immunohistochemistry, both CD40L-activated and naïve B cells injected i.v. appeared in B cell regions of spleens and lymph nodes. While the kinetics of accumulation of CD40L-activated B cells injected s.c. or i.v. were similar, s.c. injected CD40L-activated B cells homed to the T cell regions of spleens and lymph nodes. CFSE experiments indicated that these activated B cells continue to grow in vivo. In contrast, naïve B cells injected s.c. only appeared in B cell regions. Conclusion: CD40L-activated B cell populations can readily be expanded in vitro, CD40L-activated B cells migrate to secondary lymphoid organs even when injected s.c., activated B cell populations expand in vivo, and s.c. injected, CD40L-activated B cells preferentially home to T cell regions of secondary lymphoid organs. These results suggest that this effective APC may serve as an important vehicle for delivery and presentation of exogenous (e.g. tumor) antigens to T cells in vivo.


Sign in / Sign up

Export Citation Format

Share Document