scholarly journals Common chromosomal imbalances and stemness-related protein expression markers in endometriotic lesions from different anatomical sites: the potential role of stem cells

2012 ◽  
Vol 27 (11) ◽  
pp. 3187-3197 ◽  
Author(s):  
Cássia G.T. Silveira ◽  
Mauricio S. Abrão ◽  
João A. Dias ◽  
Renata A. Coudry ◽  
Fernando A. Soares ◽  
...  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenjun Wang ◽  
Jianping Wei ◽  
Xiaoyun Tu ◽  
Xiaoqun Ye

Background. Cancer stem cells (CSCs) are responsible for tumorigenesis, chemoresistance, and metastasis. Chemoresistance is a major challenge in the management of lung cancer. Glutathione-sulphur-transferase-π (GST-π) plays an important role in the origin and development of various types of cancer by regulating the cellular redox balance. Recent investigations have demonstrated that GST-π is associated with the chemoresistance of lung CSCs (LCSCs). However, the mechanism of GST-π in lung cancer, particularly in LCSCs, remains unclear. The present study is aimed at exploring the potential role of GST-π in stemness and cisplatin (DDP) resistance of LCSCs. Materials and methods. In the present study, lung cancer cell spheres were established using the A549 cell line, which according to our previous research, was confirmed to exhibit characteristics of stem cells. Next, GST-π protein expression, apoptosis percentage, and intracellular reactive oxygen species (ROS) concentration in A549 adherent cells and A549 cell spheres were analyzed by western blotting and flow cytometry, respectively. Finally, DDP resistance, ROS concentration, and GST-π expression in LCSCs were analyzed following the interference with GST-π using DL-buthionine-(S,R)-sulphoximine and N-acetylcysteine. Results. The results revealed that GST-π was highly expressed in A549 cell spheres compared with A549 adherent cells and was associated with a decreased intracellular ROS concentration (both P < 0.05 ). Regulating GST-π protein expression could alter DDP resistance of LCSCs by influencing ROS. Conclusion. These results suggested that GST-π may be important for LCSC drug resistance by downregulating ROS levels. These findings may contribute to the development of new adjuvant therapeutic strategies for lung cancer.


2021 ◽  
Vol 10 (5) ◽  
pp. 1131
Author(s):  
Magdalena Chmielińska ◽  
Marzena Olesińska ◽  
Katarzyna Romanowska-Próchnicka ◽  
Dariusz Szukiewicz

Haptoglobin (Hp) is an acute phase protein which supports the immune response and protects tissues from free radicals. Its concentration correlates with disease activity in spondyloarthropathies (SpAs). The Hp polymorphism determines the functional differences between Hp1 and Hp2 protein products. The role of the Hp polymorphism has been demonstrated in many diseases. In particular, the Hp 2-2 phenotype has been associated with the unfavorable course of some inflammatory and autoimmune disorders. Its potential role in modulating the immune system in SpA is still unknown. This article contains pathophysiological considerations on the potential relationship between Hp, its polymorphism and SpA.


Author(s):  
Lingyi Huang ◽  
Zizhuo Zheng ◽  
Ding Bai ◽  
Xianglong Han

Abstract: Stem cells from human exfoliated deciduous teeth (SHEDs) are relatively easy to isolate from exfoliated deciduous teeth, which are obtained via dental therapy as biological waste. SHEDs originate from the embryonic neural crest and therefore have considerable potential for neurogenic differentiation. Currently, an increasing amount of research attention is focused on the therapeutic applications of SHEDs in neurological diseases and injuries. In this article, we summarize the biological characteristics of SHEDs and the potential role of SHEDs and their derivatives, including conditioned medium from SHEDs and the exosomes they secrete, in the prevention and treatment of neurological diseases and injuries.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Yung-Hsin Yeh ◽  
Reza Wakili ◽  
Xiao Yan Qi ◽  
Denis Chartier ◽  
Stefan Kääb ◽  
...  

Introduction: Heart failure (HF) frequently causes atrial fibrillation (AF) and focal sources of unknown mechanism have been implicated. Here, we studied the potential role and molecular mechanisms of Ca 2+ handling abnormalities. Methods: Ca 2+ handling (microfluorescence, Indo-1 AM) and related protein expression (Western blot) were assessed in left atria of 20 dogs with ventricular tachypacing (240 bpm × 2 wks)-induced HF and 20 controls (CTLs). Whole-cell perforated-patch was used to record action potentials (APs), delayed afterdepolarizations (DADs) and triggered activity. Results : HF increased [Ca 2+ ] i transient amplitude from 239±24 to 444±43* nM (*P<0.05), and [Ca 2+ ] i release by 10 mM local caffeine puffs (an index of SR Ca 2+ content) from 849±71 (CTL) to 1574±169* nM (HF). Spontaneous Ca 2+ release events increased from 1.8±0.5 (CTL) to 10.7±2.1* events/run (HF). HF significantly increased APD (by ~40% at 1 Hz). DADs and triggered activity were more common in HF (15.2±2.6 triggered APs/run, vs CTL 0.4±0.2*), and were abolished by ryanodine (10 μM), but not by the I f -blocker Cs + (2 mM). HF caused profound changes in protein expression of key Ca 2+ handling and regulatory proteins (Table ). Calsequestrin, the major SR Ca 2+ -binding protein, was reduced by 32%*. Fractional RYR2 PKA (Ser2809) phosphorylation decreased by 63%*, whereas CaMKII (Ser2815) RYR2 phosphorylation increased by 221%*. The catalytic and regulatory (RII) PKA subunits were downregulated by 15%* and 73%*, whereas expression and autophosphorylation (Thr287) of CaMKIIδ were increased by 45%* and 81%* respectively. NCX1, SERCA and total, PKA and CaMKII phosphorylated SERCA-regulatory phospholamban were unchanged by HF. Conclusions: HF causes profound changes in regulation and expression of atrial Ca 2+ handling proteins, producing increased SR Ca 2+ load and release, along with DADs and triggered activity that may account for focal mechanisms that initiate and/or sustain HF-related AF.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yong-Hua Peng ◽  
Jie Xiao ◽  
Chen Yan ◽  
Lan Luo ◽  
Tao-Sheng Li

The mechanisms of renal fibrogenesis after ureteral obstruction remain unclear. We tried to primarily expand mesenchymal stem cells from renal tissues and then investigated their role in fibrogenesis after ureteral obstruction. Unilateral ureteral obstruction was induced by ligating the left ureteral duct of adult C57BL/6 mice. We collected the kidneys for experiments at 2, 7, and 14 days after operation. Histological analysis showed obviously fibrotic changes in the left kidney at 7 days and further increased at 14 days after ureteral obstruction. To expand mesenchymal stem cells, we minced the renal tissues into small explants (about 1 mm3) and cultured onto 10 cm dishes. Interestingly, the outgrowth of cells was observed significantly earlier from the explants of the obstructed left kidney than that of the unobstructed right kidney. These expanded cells showed the potency of adipogenic, osteogenic, and chondrogenic differentiations and positively expressed with CD44 and partly expressed with CD90, CD105, and CD106, but negatively expressed with CD34, CD45, and FSP1, suggesting the phenotype of mesenchymal stem-like cells (MSLCs). The mouse fibrosis RT2 profiler PCR array showed that many genes were changed over 2-fold in the MSLCs expanded from both kidneys at 2, 7, and 14 days after operation. Interestingly, profibrotic genes were prevalently enhanced in the left kidney with ureteral obstruction. Histological analysis also showed obviously infiltration of inflammatory cells in the left kidney at 14 days after operation. Our data indicate the potential role of resident MSLCs in renal fibrogenesis after ureteral obstruction, but further experiments are required to understand the relevant mechanisms.


Sign in / Sign up

Export Citation Format

Share Document