scholarly journals The Ecomechanics of Gecko Adhesion: Natural Surface Topography, Evolution, and Biomimetics

2019 ◽  
Vol 59 (1) ◽  
pp. 148-167 ◽  
Author(s):  
Timothy E Higham ◽  
Anthony P Russell ◽  
Peter H Niewiarowski ◽  
Amber Wright ◽  
Thomas Speck

Abstract The study of gecko adhesion is necessarily interdisciplinary due to the hierarchical nature of the adhesive system and the complexity of interactions between the animals and their habitats. In nature, geckos move on a wide range of surfaces including soft sand dunes, trees, and rocks, but much of the research over the past two decades has focused on their adhesive performance on artificial surfaces. Exploring the complex interactions between geckos and their natural habitats will reveal aspects of the adhesive system that can be applied to biomimetic research, such as the factors that facilitate movement on dirty and rough surfaces with varying microtopography. Additionally, contrasting suites of constraints and topographies are found on rocks and plants, likely driving differences in locomotion and morphology. Our overarching goals are to bring to light several aspects of ecology that are important for gecko–habitat interactions, and to propose a framework for how they can inspire material scientists and functional ecologists. We also present new data on surface roughness and topography of a variety of surfaces, and adhesive performance of Phelsuma geckos on surfaces of varying roughness. We address the following key questions: (1) why and how should ecology be incorporated into the study of gecko adhesion? (2) What topographical features of rocks and plants likely drive adhesive performance? (3) How can ecological studies inform material science research? Recent advances in surface replication techniques that eliminate confounding factors among surface types facilitate the ability to address some of these questions. We pinpoint gaps in our understanding and identify key initiatives that should be adopted as we move forward. Most importantly, fine details of locomotor microhabitat use of both diurnal and nocturnal geckos are needed.

2019 ◽  
Vol 59 (1) ◽  
pp. 214-226 ◽  
Author(s):  
Alyssa Y Stark ◽  
Christopher T Mitchell

Abstract The gecko adhesive system has inspired hundreds of synthetic mimics principally focused on replicating the strong, reversible, and versatile properties of the natural system. For geckos native to the tropics, versatility includes the need to remain attached to substrates that become wet from high humidity and frequent rain. Paradoxically, van der Waals forces, the principal mechanism responsible for gecko adhesion, reduce to zero when two contacting surfaces separate even slightly by entrapped water layers. A series of laboratory studies show that instead of slipping, geckos maintain and even improve their adhesive performance in many wet conditions (i.e., on wet hydrophobic substrates, on humid substrates held at low temperatures). The mechanism for this is not fully clarified, and likely ranges in scale from the chemical and material properties of the gecko’s contact structures called setae (e.g., setae soften and change surface confirmation when exposed to water), to their locomotor biomechanics and decision-making behavior when encountering water on a substrate in their natural environment (e.g., some geckos tend to run faster and stop more frequently on misted substrates than dry). Current work has also focused on applying results from the natural system to gecko-inspired synthetic adhesives, improving their performance in wet conditions. Gecko-inspired synthetic adhesives have also provided a unique opportunity to test hypotheses about the natural system in semi-natural conditions replicated in the laboratory. Despite many detailed studies focused on the role of water and humidity on gecko and gecko-inspired synthetic adhesion, there remains several outstanding questions: (1) what, if any, role does capillary or capillary-like adhesion play on overall adhesive performance of geckos and gecko-inspired synthetics, (2) how do chemical and material changes at the surface and in the bulk of gecko setae and synthetic fibrils change when exposed to water, and what does this mean for adhesive performance, and (3) how much water do geckos encounter in their native environment, and what is their corresponding behavioral response? This review will detail what we know about gecko adhesion in wet environments, and outline the necessary next steps in biological and synthetic system investigations.


2019 ◽  
Vol 59 (1) ◽  
pp. 203-213 ◽  
Author(s):  
Peter H Niewiarowski ◽  
Ali Dhinojwala ◽  
Austin M Garner

AbstractIt has been nearly 20 years since Autumn and colleagues established the central role of van der Waals intermolecular forces in how geckos stick. Much has been discovered about the structure and function of fibrillar adhesives in geckos and other taxa, and substantial success has been achieved in translating natural models into bioinspired synthetic adhesives. Nevertheless, synthetics still cannot match the multidimensional performance observed in the natural gecko system that is simultaneously robust to dirt and water, resilient over thousands of cycles, and purportedly competent on surfaces that are rough at drastically different length scales. Apparent insensitivity of adhesion to variability in roughness is particularly interesting from both a theoretical and applied perspective. Progress on understanding the extent to which and the basis of how the gecko adhesive system is robust to variation in roughness is impeded by the complexity of quantifying roughness of natural surfaces and a dearth of data on free-ranging gecko substrate use. Here we review the main challenges in characterizing rough surfaces as they relate to collecting relevant estimates of variation in gecko adhesive performance across different substrates in their natural habitats. In response to these challenges, we propose a practical protocol (borrowing from thermal biophysical ecological methods) that will enable researchers to design detailed studies of structure–function relationships of the gecko fibrillar system. Employing such an approach will help provide specific hypotheses about how adhesive pad structure translates into a capacity for robust gecko adhesion across large variation in substrate roughness. Preliminary data we present on this approach suggest its promise in advancing the study of how geckos deal with roughness variation. We argue and outline how such data can help advance development of design parameters to improve bioinspired adhesives based on the gecko fibrillar system.


Author(s):  
Simeon J. Yates ◽  
Jordana Blejmar

Two workshops were part of the final steps in the Economic and Social Research Council (ESRC) commissioned Ways of Being in a Digital Age project that is the basis for this Handbook. The ESRC project team coordinated one with the UK Defence Science and Technology Laboratory (ESRC-DSTL) Workshop, “The automation of future roles”; and one with the US National Science Foundation (ESRC-NSF) Workshop, “Changing work, changing lives in the new technological world.” Both workshops sought to explore the key future social science research questions arising for ever greater levels of automation, use of artificial intelligence, and the augmentation of human activity. Participants represented a wide range of disciplinary, professional, government, and nonprofit expertise. This chapter summarizes the separate and then integrated results. First, it summarizes the central social and economic context, the method and project context, and some basic definitional issues. It then identifies 11 priority areas needing further research work that emerged from the intense interactions, discussions, debates, clustering analyses, and integration activities during and after the two workshops. Throughout, it summarizes how subcategories of issues within each cluster relate to central issues (e.g., from users to global to methods) and levels of impacts (from wider social to community and organizational to individual experiences and understandings). Subsections briefly describe each of these 11 areas and their cross-cutting issues and levels. Finally, it provides a detailed Appendix of all the areas, subareas, and their specific questions.


2020 ◽  
pp. 1-10
Author(s):  
Bryce J. Dietrich

Abstract Although previous scholars have used image data to answer important political science questions, less attention has been paid to video-based measures. In this study, I use motion detection to understand the extent to which members of Congress (MCs) literally cross the aisle, but motion detection can be used to study a wide range of political phenomena, like protests, political speeches, campaign events, or oral arguments. I find not only are Democrats and Republicans less willing to literally cross the aisle, but this behavior is also predictive of future party voting, even when previous party voting is included as a control. However, this is one of the many ways motion detection can be used by social scientists. In this way, the present study is not the end, but the beginning of an important new line of research in which video data is more actively used in social science research.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Erika Berenice Martínez-Ruiz ◽  
Myriel Cooper ◽  
Jimena Barrero-Canosa ◽  
Mindia A. S. Haryono ◽  
Irina Bessarab ◽  
...  

Abstract Background Cylindrospermopsin is a highly persistent cyanobacterial secondary metabolite toxic to humans and other living organisms. Strain OF001 and A210 are manganese-oxidizing bacteria (MOB) able to transform cylindrospermopsin during the oxidation of Mn2+. So far, the enzymes involved in manganese oxidation in strain OF001 and A210 are unknown. Therefore, we analyze the genomes of two cylindrospermopsin-transforming MOB, Pseudomonas sp. OF001 and Rubrivivax sp. A210, to identify enzymes that could catalyze the oxidation of Mn2+. We also investigated specific metabolic features related to pollutant degradation and explored the metabolic potential of these two MOB with respect to the role they may play in biotechnological applications and/or in the environment. Results Strain OF001 encodes two multicopper oxidases and one haem peroxidase potentially involved in Mn2+ oxidation, with a high similarity to manganese-oxidizing enzymes described for Pseudomonas putida GB-1 (80, 83 and 42% respectively). Strain A210 encodes one multicopper oxidase potentially involved in Mn2+ oxidation, with a high similarity (59%) to the manganese-oxidizing multicopper oxidase in Leptothrix discophora SS-1. Strain OF001 and A210 have genes that might confer them the ability to remove aromatic compounds via the catechol meta- and ortho-cleavage pathway, respectively. Based on the genomic content, both strains may grow over a wide range of O2 concentrations, including microaerophilic conditions, fix nitrogen, and reduce nitrate and sulfate in an assimilatory fashion. Moreover, the strain A210 encodes genes which may convey the ability to reduce nitrate in a dissimilatory manner, and fix carbon via the Calvin cycle. Both MOB encode CRISPR-Cas systems, several predicted genomic islands, and phage proteins, which likely contribute to their genome plasticity. Conclusions The genomes of Pseudomonas sp. OF001 and Rubrivivax sp. A210 encode sequences with high similarity to already described MCOs which may catalyze manganese oxidation required for cylindrospermopsin transformation. Furthermore, the analysis of the general metabolism of two MOB strains may contribute to a better understanding of the niches of cylindrospermopsin-removing MOB in natural habitats and their implementation in biotechnological applications to treat water.


2005 ◽  
Vol 2005 ◽  
pp. 247-253 ◽  
Author(s):  
S. Jarvis ◽  
J.E.L. Day ◽  
B. Reed

Animal science research is important in relation to our understanding of animals, their function and performance, and their relationships with their social and physical environments. Animal science research covers a wide range of disciplines and so can lead to the use of a variety of experimental techniques on animals for many different purposes. This has the potential to lead to a multitude of diverse ethical issues. Members of the British Society of Animal Science and authors of papers submitted to the Society for publication come from countries around the world and therefore are subject to differences in legislative requirements and recommendations regarding animal experimentation. These legal requirements, along with the ethical implications of the research must be fully considered before any experimental work is undertaken.


2002 ◽  
Vol 758 ◽  
Author(s):  
Khershed P. Cooper

ABSTRACTLayered Manufacturing (LM) refers to computer-aided manufacturing processes in which parts are made in sequential layers relatively quickly. Parts that are produced by LM can be formed from a wide range of materials such as photosensitive polymers, metals and ceramics in sizes from a centimeter to a few meters with sub-millimeter feature resolutions. LM has found use in diverse areas including biomedical engineering, pharmaceuticals, aerospace, defense, electronics and design engineering. The promise of LM is the capability to make customized complex-shaped functional parts without specialized tooling and without assembly. LM is still a few years away from fully realizing its promise but its potential for manufacturing remains high. A few of the fundamental challenges in materials processing confronting the community are improving the quality of the surface finish, eliminating residual stress, controlling local composition and microstructure, achieving fine feature size and dimensional tolerance and accelerating processing speed. Until these challenges are met, the applicability of LM and its commercialization will be restricted. Sustained scientific activity in LM has advanced over the past decade into many different areas of manufacturing and has enabled exploration of novel processes and development of hybrid processes. The research community of today has the opportunity to shape the future direction of science research to realize the full potential of LM.


Author(s):  
Genqiang Chen ◽  
Lina Zhu ◽  
Yanfei Xia ◽  
Jinming Yang ◽  
Song Zhang ◽  
...  

Background: Developing the high-efficiency and low-risk small-molecule green-nematocide is the key of effective control of the nematodes. Paeonol, is a naturally occurring phenolic compound, isolated from the root bark of Paeonia suffruticosa and the whole plant of Cynanchum paniculatum. Due to its crucial phenolic ketone skeleton, modern biological science research has indicated that paeonol has a wide range of biological activities. The structural modification of paeonol into paeonol carbonyl hydrazone derivatives is a potential approach for the development of novel nematodes, which showed more toxicity than paeonol. However, there are no reports on the nematicidal activity of paeonol carbonyl hydrazone derivatives to control Heterodera glycines. Results: We always endeavor to discover and develop biorational natural products-based pesticidal agents, 4 significant intermediates and 21 novel 3/5(3,5)-(di)nitro/chloropaeonol carbonyl hydrazone derivatives were prepared, and their structures well characterized by 1H NMR, HRMS, MS, and mp. Due to the steric hindrance, the substituents on the C=N double bond of all hydrazine compounds adopted E configuration. Results of nematicidal activity revealed that, among all compounds, especially 5-nitropaeonol (5) and 3,5-dinitropaeonol (7) displayed the most potent nematicidal activity H. glycines in vivo with LC50 values of 0.0323 and 0.0367 mg/mL, respectively. Conclusion: It suggested that for the 3/5(3,5)-(di)nitro/chloropaeonol carbonyl hydrazone derivatives, a nitro group introduced at C5 position of 1 was necessary for obtaining the potent compound as nematicidal agents. These preliminary results will pave the way for further modification of paeonol in the development of potential new nematicides.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 534 ◽  
Author(s):  
Cristian Pasquaretta ◽  
Tamara Gómez-Moracho ◽  
Philipp Heeb ◽  
Mathieu Lihoreau

Microbes influence a wide range of host social behaviors and vice versa. So far, however, the mechanisms underpinning these complex interactions remain poorly understood. In social animals, where individuals share microbes and interact around foods, the gut microbiota may have considerable consequences on host social interactions by acting upon the nutritional behavior of individual animals. Here we illustrate how conceptual advances in nutritional ecology can help the study of these processes and allow the formulation of new empirically testable predictions. First, we review key evidence showing that gut microbes influence the nutrition of individual animals, through modifications of their nutritional state and feeding decisions. Next, we describe how these microbial influences and their social consequences can be studied by modelling populations of hosts and their gut microbiota into a single conceptual framework derived from nutritional geometry. Our approach raises new perspectives for the study of holobiont nutrition and will facilitate theoretical and experimental research on the role of the gut microbiota in the mechanisms and evolution of social behavior.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Anna Sandak ◽  
Jakub Sandak ◽  
Dominika Janiszewska ◽  
Salim Hiziroglu ◽  
Marta Petrillo ◽  
...  

The overall goal of this work was to develop a prototype expert system assisting quality control and traceability of particleboard panels on the production floor. Four different types of particleboards manufactured at the laboratory scale and in industrial plants were evaluated. The material differed in terms of panel type, composition, and adhesive system. NIR spectroscopy was employed as a pioneer tool for the development of a two-level expert system suitable for classification and traceability of investigated samples. A portable, commercially available NIR spectrometer was used for nondestructive measurements of particleboard panels. Twenty-five batches of particleboards, each containing at least three independent replicas, was used for the original system development and assessment of its performance. Four alternative chemometric methods (PLS-DA, kNN, SIMCA, and SVM) were used for spectroscopic data classification. The models were developed for panel recognition at two levels differing in terms of their generality. In the first stage, four among twenty-four tested combinations resulted in 100% correct classification. Discrimination precision with PLS-DA and SVMC was high (>99%), even without any spectra preprocessing. SNV preprocessed spectra and SVMC algorithm were used at the second stage for panel batch classification. Panels manufactured by two producers were 100% correctly classified, industrial panels produced by different manufacturing plants were classified with 98.9% success, and the experimental panels manufactured in the laboratory were classified with 63.7% success. Implementation of NIR spectroscopy for wood-based product traceability and quality control may have a great impact due to the high versatility of the production and wide range of particleboards utilization.


Sign in / Sign up

Export Citation Format

Share Document