scholarly journals Deep learning models for the prediction of small-scale fisheries catches: finfish fishery in the region of “Bahía Magadalena-Almejas”

2018 ◽  
Vol 75 (6) ◽  
pp. 2088-2096 ◽  
Author(s):  
Ricardo Alberto Cavieses Núñez ◽  
Miguel Ángel Ojeda Ruiz de la Peña ◽  
Alfredo Flores Irigollen ◽  
Manuel Rodríguez Rodríguez

Abstract Globally, over 80% of fisheries are at maximum sustainable levels or overexploited. However, small-scale fisheries (SSFs) in developing countries play a relevant role in coastal communities’ development with important impacts on the economy. The SSFs are normally multi-specific and due to the lack of data, studying them by simulation poses an important challenge especially forecasting models. These models are necessary to support management decisions or develop sustainable fisheries; therefore, models based on Deep Learning were proposed to forecast SSFs catch, using data from official catch landing reports (OCLRs), satellite images, and oceanographic data. The finfish fishery in Bahía Magdalena-Almejas (México) was used for the present study. According to an analysis of OCLRs, the target species of major importance in the fishery were identified and selected for the model. The proposed deep learning models used two artificial neural networks structures: non-linear autoregressive neural network and long-short term memory network, which were designed to assess and forecast monthly catch levels of Paralabrax nebulifer and Caulolatilus princeps. Models with a performance efficiency of R > 0.8, MSE < 300 were found, which indicate that the models are applicable in SSF with poor data and multi-specific fishery contexts, at low cost.

2021 ◽  
Vol 49 (2) ◽  
pp. 342-353
Author(s):  
Ricardo Cavieses-Núñez ◽  
Miguel A. Ojeda-Ruiz ◽  
Alfredo Flores-Irigollen ◽  
Elvia Marín-Monroy ◽  
Mirtha Lbañez-Lucero ◽  
...  

Small-scale fishing (SSF) is a relevant economic activity worldwide, so sustainable development will be essential to assure its contributions to food security, poverty alleviation, and healthy ecosystems. However, the wide diversity of fisheries, their complexity, and the lack of information limit the ability to propose/evaluate management measures and plans and their effects on communities and other productive activities. The state of Baja California Sur, Mexico, our study case, ranks as the third place in national fisheries production, possesses SSF fleets, has a wide variety of fisheries that share fishing areas, fishing seasons, and operating units. In this work, assuming SSF as a complex system were proposed deep learning models (DLM) to forecast the catch volumes, evaluate each input variable's importance, and find interactions. Environmental variables and catch fisheries were tested in the DLM to estimate their predictive power. Different DLM structures and parameters to find the optimal model was used. The variables that presented higher predictive power are the environmental variables with R = 0.90. Moreover, when used in combination with the catches from other areas, the performance of R = 0.95 is obtained. Using only the catches, the model has an R = 0.81. This model allows the use of variables that indirectly affect the system and demonstrates a useful tool to assess a complex system's state in the face of disturbances in its variables.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3433 ◽  
Author(s):  
Seon Kim ◽  
Gyul Lee ◽  
Gu-Young Kwon ◽  
Do-In Kim ◽  
Yong-June Shin

Load forecasting is a key issue for efficient real-time energy management in smart grids. To control the load using demand side management accurately, load forecasting should be predicted in the short term. With the advent of advanced measuring infrastructure, it is possible to measure energy consumption at sampling rates up to every 5 min and analyze the load profile of small-scale energy groups, such as individual buildings. This paper presents applications of deep learning using feature decomposition for improving the accuracy of load forecasting. The load profile is decomposed into a weekly load profile and then decomposed into intrinsic mode functions by variational mode decomposition to capture periodic features. Then, a long short-term memory network model is trained by three-dimensional input data with three-step regularization. Finally, the prediction results of all intrinsic mode functions are combined with advanced measuring infrastructure measured in the previous steps to determine an aggregated output for load forecasting. The results are validated by applications to real-world data from smart buildings, and the performance of the proposed approach is assessed by comparing the predicted results with those of conventional methods, nonlinear autoregressive networks with exogenous inputs, and long short-term memory network-based feature decomposition.


Author(s):  
S. Arokiaraj ◽  
Dr. N. Viswanathan

With the advent of Internet of things(IoT),HA (HA) recognition has contributed the more application in health care in terms of diagnosis and Clinical process. These devices must be aware of human movements to provide better aid in the clinical applications as well as user’s daily activity.Also , In addition to machine and deep learning algorithms, HA recognition systems has significantly improved in terms of high accurate recognition. However, the most of the existing models designed needs improvisation in terms of accuracy and computational overhead. In this research paper, we proposed a BAT optimized Long Short term Memory (BAT-LSTM) for an effective recognition of human activities using real time IoT systems. The data are collected by implanting the Internet of things) devices invasively. Then, proposed BAT-LSTM is deployed to extract the temporal features which are then used for classification to HA. Nearly 10,0000 dataset were collected and used for evaluating the proposed model. For the validation of proposed framework, accuracy, precision, recall, specificity and F1-score parameters are chosen and comparison is done with the other state-of-art deep learning models. The finding shows the proposed model outperforms the other learning models and finds its suitability for the HA recognition.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Juhong Namgung ◽  
Siwoon Son ◽  
Yang-Sae Moon

In recent years, cyberattacks using command and control (C&C) servers have significantly increased. To hide their C&C servers, attackers often use a domain generation algorithm (DGA), which automatically generates domain names for the C&C servers. Accordingly, extensive research on DGA domain detection has been conducted. However, existing methods cannot accurately detect continuously generated DGA domains and can easily be evaded by an attacker. Recently, long short-term memory- (LSTM-) based deep learning models have been introduced to detect DGA domains in real time using only domain names without feature extraction or additional information. In this paper, we propose an efficient DGA domain detection method based on bidirectional LSTM (BiLSTM), which learns bidirectional information as opposed to unidirectional information learned by LSTM. We further maximize the detection performance with a convolutional neural network (CNN) + BiLSTM ensemble model using Attention mechanism, which allows the model to learn both local and global information in a domain sequence. Experimental results show that existing CNN and LSTM models achieved F1-scores of 0.9384 and 0.9597, respectively, while the proposed BiLSTM and ensemble models achieved higher F1-scores of 0.9618 and 0.9666, respectively. In addition, the ensemble model achieved the best performance for most DGA domain classes, enabling more accurate DGA domain detection than existing models.


2021 ◽  
Vol 7 ◽  
pp. e795
Author(s):  
Pooja Vinayak Kamat ◽  
Rekha Sugandhi ◽  
Satish Kumar

Remaining Useful Life (RUL) estimation of rotating machinery based on their degradation data is vital for machine supervisors. Deep learning models are effective and popular methods for forecasting when rotating machinery such as bearings may malfunction and ultimately break down. During healthy functioning of the machinery, however, RUL is ill-defined. To address this issue, this study recommends using anomaly monitoring during both RUL estimator training and operation. Essential time-domain data is extracted from the raw bearing vibration data, and deep learning models are used to detect the onset of the anomaly. This further acts as a trigger for data-driven RUL estimation. The study employs an unsupervised clustering approach for anomaly trend analysis and a semi-supervised method for anomaly detection and RUL estimation. The novel combined deep learning-based anomaly-onset aware RUL estimation framework showed enhanced results on the benchmarked PRONOSTIA bearings dataset under non-varying operating conditions. The framework consisting of Autoencoder and Long Short Term Memory variants achieved an accuracy of over 90% in anomaly detection and RUL prediction. In the future, the framework can be deployed under varying operational situations using the transfer learning approach.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_4) ◽  
Author(s):  
ChienYu Chi ◽  
Yen-Pin Chen ◽  
Adrian Winkler ◽  
Kuan-Chun Fu ◽  
Fie Xu ◽  
...  

Introduction: Predicting rare catastrophic events is challenging due to lack of targets. Here we employed a multi-task learning method and demonstrated that substantial gains in accuracy and generalizability was achieved by sharing representations between related tasks Methods: Starting from Taiwan National Health Insurance Research Database, we selected adult people (>20 year) experienced in-hospital cardiac arrest but not out-of-hospital cardiac arrest during 8 years (2003-2010), and built a dataset using de-identified claims of Emergency Department (ED) and hospitalization. Final dataset had 169,287 patients, randomly split into 3 sections, train 70%, validation 15%, and test 15%.Two outcomes, 30-day readmission and 30-day mortality are chosen. We constructed the deep learning system in two steps. We first used a taxonomy mapping system Text2Node to generate a distributed representation for each concept. We then applied a multilevel hierarchical model based on long short-term memory (LSTM) architecture. Multi-task models used gradient similarity to prioritize the desired task over auxiliary tasks. Single-task models were trained for each desired task. All models share the same architecture and are trained with the same input data Results: Each model was optimized to maximize AUROC on the validation set with the final metrics calculated on the held-out test set. We demonstrated multi-task deep learning models outperform single task deep learning models on both tasks. While readmission had roughly 30% positives and showed miniscule improvements, the mortality task saw more improvement between models. We hypothesize that this is a result of the data imbalance, mortality occurred roughly 5% positive; the auxiliary tasks help the model interpret the data and generalize better. Conclusion: Multi-task deep learning models outperform single task deep learning models in predicting 30-day readmission and mortality in in-hospital cardiac arrest patients.


2022 ◽  
pp. 20-39
Author(s):  
Elliot Mbunge ◽  
Benhildah Muchemwa

Social media platforms play a tremendous role in the tourism and hospitality industry. Social media platforms are increasingly becoming a source of information. The complexity and increasing size of tourists' online data make it difficult to extract meaningful insights using traditional models. Therefore, this scoping and comprehensive review aimed to analyze machine learning and deep learning models applied to model tourism data. The study revealed that deep learning and machine learning models are used for forecasting and predicting tourism demand using data from search query data, Google trends, and social media platforms. Also, the study revealed that data-driven models can assist managers and policymakers in mapping and segmenting tourism hotspots and attractions and predicting revenue that is likely to be generated, exploring targeting marketing, segmenting tourists based on their spending patterns, lifestyle, and age group. However, hybrid deep learning models such as inceptionV3, MobilenetsV3, and YOLOv4 are not yet explored in the tourism and hospitality industry.


2018 ◽  
Vol 19 (9) ◽  
pp. 2817 ◽  
Author(s):  
Haixia Long ◽  
Bo Liao ◽  
Xingyu Xu ◽  
Jialiang Yang

Protein hydroxylation is one type of post-translational modifications (PTMs) playing critical roles in human diseases. It is known that protein sequence contains many uncharacterized residues of proline and lysine. The question that needs to be answered is: which residue can be hydroxylated, and which one cannot. The answer will not only help understand the mechanism of hydroxylation but can also benefit the development of new drugs. In this paper, we proposed a novel approach for predicting hydroxylation using a hybrid deep learning model integrating the convolutional neural network (CNN) and long short-term memory network (LSTM). We employed a pseudo amino acid composition (PseAAC) method to construct valid benchmark datasets based on a sliding window strategy and used the position-specific scoring matrix (PSSM) to represent samples as inputs to the deep learning model. In addition, we compared our method with popular predictors including CNN, iHyd-PseAAC, and iHyd-PseCp. The results for 5-fold cross-validations all demonstrated that our method significantly outperforms the other methods in prediction accuracy.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Haifeng Sang ◽  
Chuanzheng Wang ◽  
Dakuo He ◽  
Qing Liu

This paper presents a multi-information flow convolutional neural network (MiF-CNN) model for person reidentification (re-id). It contains several specific multilayer convolutional structures, where the input and output of a convolutional layer are concatenated together on channel dimension. With this idea, layers of model can go deeper and feature maps can be reused by each subsequent layer. Inspired by an image caption, a person attribute recognition network is proposed based on long-short-term memory network and attention mechanism. By fusing identification results of MiF-CNN and attribute recognition, this paper introduces the attribute-aided reranking algorithm to improve the accuracy of person re-id further. Experiments on VIPeR, CUHK01, and Market1501 datasets verify the proposed MiF-CNN can be trained sufficiently with small-scale datasets and obtain outstanding accuracy of person re-id. Contrast experiments also confirm the availability of the attribute-assisted reranking algorithm.


Sign in / Sign up

Export Citation Format

Share Document