Studies on the Passage of Helminth Larvae Through Host Tissues I. Histochemical Studies on the Extracellular Changes Caused by Penetrating Larvae II. Enzymatic Activity of Larvae In Vitro and In Vivo

1954 ◽  
Vol 95 (1) ◽  
pp. 13-51 ◽  
Author(s):  
R. M. Lewert ◽  
C.-L. Lee
2019 ◽  
Vol 12 (1) ◽  
pp. 27-49 ◽  
Author(s):  
Shahinda S.R. Alsayed ◽  
Chau C. Beh ◽  
Neil R. Foster ◽  
Alan D. Payne ◽  
Yu Yu ◽  
...  

Background:Mycolic acids (MAs) are the characteristic, integral building blocks for the mycomembrane belonging to the insidious bacterial pathogen Mycobacterium tuberculosis (M.tb). These C60-C90 long α-alkyl-β-hydroxylated fatty acids provide protection to the tubercle bacilli against the outside threats, thus allowing its survival, virulence and resistance to the current antibacterial agents. In the post-genomic era, progress has been made towards understanding the crucial enzymatic machineries involved in the biosynthesis of MAs in M.tb. However, gaps still remain in the exact role of the phosphorylation and dephosphorylation of regulatory mechanisms within these systems. To date, a total of 11 serine-threonine protein kinases (STPKs) are found in M.tb. Most enzymes implicated in the MAs synthesis were found to be phosphorylated in vitro and/or in vivo. For instance, phosphorylation of KasA, KasB, mtFabH, InhA, MabA, and FadD32 downregulated their enzymatic activity, while phosphorylation of VirS increased its enzymatic activity. These observations suggest that the kinases and phosphatases system could play a role in M.tb adaptive responses and survival mechanisms in the human host. As the mycobacterial STPKs do not share a high sequence homology to the human’s, there have been some early drug discovery efforts towards developing potent and selective inhibitors.Objective:Recent updates to the kinases and phosphatases involved in the regulation of MAs biosynthesis will be presented in this mini-review, including their known small molecule inhibitors.Conclusion:Mycobacterial kinases and phosphatases involved in the MAs regulation may serve as a useful avenue for antitubercular therapy.


2004 ◽  
Vol 76 (6) ◽  
pp. 519-527 ◽  
Author(s):  
T FUKAMI ◽  
M NAKAJIMA ◽  
R YOSHIDA ◽  
Y TSUCHIYA ◽  
Y FUJIKI ◽  
...  

2019 ◽  
Vol 20 (6) ◽  
pp. 1517 ◽  
Author(s):  
Kai Wang ◽  
Yu Su ◽  
Yuting Liang ◽  
Yanhui Song ◽  
Liping Wang

Type 2 diabetes mellitus (T2DM) is associated with pancreatic β-cell dysfunction which can be induced by oxidative stress. Deuterohemin-βAla-His-Thr-Val-Glu-Lys (DhHP-6) is a microperoxidase mimetic that can scavenge reactive oxygen species (ROS) in vivo. In our previous studies, we demonstrated an increased stability of linear peptides upon their covalent attachment to porphyrins. In this study, we assessed the utility of DhHP-6 as an oral anti-diabetic drug in vitro and in vivo. DhHP-6 showed high resistance to proteolytic degradation in vitro and in vivo. The degraded DhHP-6 product in gastrointestinal (GI) fluid retained the enzymatic activity of DhHP-6, but displayed a higher permeability coefficient. DhHP-6 protected against the cell damage induced by H2O2 and promoted insulin secretion in INS-1 cells. In the T2DM model, DhHP-6 reduced blood glucose levels and facilitated the recovery of blood lipid disorders. DhHP-6 also mitigated both insulin resistance and glucose tolerance. Most importantly, DhHP-6 promoted the recovery of damaged pancreas islets. These findings suggest that DhHP-6 in physiological environments has high stability against enzymatic degradation and maintains enzymatic activity. As DhHP-6 lowered the fasting blood glucose levels of T2DM mice, it thus represents a promising candidate for oral administration and clinical therapy.


1995 ◽  
Vol 269 (4) ◽  
pp. L473-L481
Author(s):  
P. M. Reddy ◽  
C. P. Tu ◽  
R. Wu

The purpose of this study is to characterize glutathione S-transferase (GST) gene expression in airway epithelium both in vivo and in vitro. Immunohistochemical staining of nonhuman primate lungs of well-controlled healthy animals reveals the presence of alpha- and pi-class GST isoenzymes in ciliated bronchial epithelium. The stain of mu-GST antibody is either very low or absent in some of these monkey lungs. We observed that primary tracheobronchial epithelial (TBE) cells isolated from human and monkey pulmonary tissues maintain a relatively high level of GST enzymatic activity in culture, compared with various immortalized human TBE cell lines and other nonpulmonary cell lines. Northern blot analysis demonstrated the presence of mu-, pi-, and microsomal-GST messages but not the alpha-class message in cultures of primary TBE cells as well as in various human TBE cell lines. The expression of mu- and pi-class GST genes can be further regulated in culture by various environmental factors; however, most of these regulating factors are associated with TBE cell differentiation in culture. For instance, vitamin A treatment, which was shown to enhance mucous cell differentiation in vitro, stimulated the message levels of mu- and pi-class GST. Furthermore, plating cells on collagen gel substrata, which also enhanced mucous cell differentiation in culture, instead of plastic culture surface, enhanced total GST enzymatic activity by eightfold, and this enhancement is related to an increase in the expression of the pi-class GST gene. These results demonstrated that GST genes are differentially expressed and regulated by various environmental factors in primary TBE cells and various cell lines, and the regulation is correlated to the mucous cell differentiation in culture.


Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5287-5296 ◽  
Author(s):  
YL Zu ◽  
Y Ai ◽  
A Gilchrist ◽  
ME Labadia ◽  
RI Sha'afi ◽  
...  

In response to extracellular stimulation, one of the earliest events in human neutrophils is protein phosphorylation, which mediates signal transduction and leads to the regulation of cellular functions. Mitogen- activated protein (MAP) kinases are rapidly activated by a variety of mitogens, cytokines, and stresses. The activated MAP kinases in turn regulate their substrate molecules by phosphorylation. MAP kinase- activated protein (MAPKAP) kinase 2, a Ser/Thr kinase, has been shown to be phosphorylated by p38 MAP kinase both in vivo and in vitro. Phosphorylation of the Thr-334 site of MAPKAP kinase 2 results in a conformational change with subsequent activation of the enzyme. To better define the role of MAPKAP kinase 2 in the activation of human neutrophils, its enzymatic activity was measured after stimulation by either a phorbol ester (phorbol myristate acetate [PMA]), a potent protein kinase C activator, or the tripeptide fMLP, which is a chemotactic factor. The in vitro kinase assays indicate that both PMA and fMLP stimulated a transient increase in the enzymatic activity of cellular MAPKAP kinase 2. The induced kinase activation was concentration-dependent and reached a maximum at 5 minutes for PMA and 1 minute for fMLP. To identify potential substrate molecules for MAPKAP kinase 2, a highly active kinase mutant was generated by mutating the MAP kinase phosphorylation site in the C-terminal region. The replacement of threonine 334 with alanine resulted in a marked augmentation of catalytic activity. Analysis of in vitro protein phosphorylation in the presence of the active kinase indicates that a 60-kD cytosolic protein (p60) was markedly phosphorylated and served as the major substrate for MAPKAP kinase 2 in human neutrophils. Based on the MAPKAP kinase 2 phosphorylation site of Hsp27, a competitive inhibitory peptide was synthesized. This competitive inhibitory peptide specifically inhibited MAPKAP kinase 2 enzymatic activity, as well as the in vitro and in vivo kinase-induced p60 phosphorylation. To assess the contribution of MAPKAP kinase 2 in neutrophil function, the oxidative burst response after manipulation of endogenous kinase activity was measured. Intracellular delivery of the competitive inhibitory peptide into human neutrophils reduced both PMA- and fMLP- stimulated superoxide anion production. Thus, the results strongly suggest that MAPKAP kinase 2 is involved in the activation of human neutrophils.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1964 ◽  
Author(s):  
Mengqiu Song ◽  
Shuying Yin ◽  
Ran Zhao ◽  
Kangdong Liu ◽  
Joydeb Kumar Kundu ◽  
...  

Topoisomerase (TOP) I plays a major role in the process of supercoiled DNA relaxation, thereby facilitating DNA replication and cell cycle progression. The expression and enzymatic activity of TOP I is positively correlated with tumor progression. Although the anticancer activity of (S)-10-Hydroxycamptothecin (HCPT), a TOP I specific inhibitor, has been reported in various cancers, the effect of HCPT on esophageal cancer is yet to be examined. In this study, we investigate the potential of HCPT to inhibit the growth of ESCC cells in vitro and verify its anti-tumor activity in vivo by using a patient-derived xenograft (PDX) tumor model in mice. Our study revealed the overexpression of TOP I in ESCC cells and treatment with HCPT inhibited TOP I enzymatic activity at 24 h and decreased expression at 48 h and 72 h. HCPT also induced DNA damage by increasing the expression of H2A.XS139. HCPT significantly decreased the proliferation and anchorage-independent growth of ESCC cells (KYSE410, KYSE510, KYSE30, and KYSE450). Mechanistically, HCPT inhibited the G2/M phase cell cycle transition, decreased the expression of cyclin B1, and elevated p21 expression. In addition, HCPT stimulated ESCC cells apoptosis, which was associated with elevated expression of cleaved PARP, cleaved caspase-3, cleaved caspase-7, Bax, Bim, and inhibition of Bcl-2 expression. HCPT dramatically suppressed PDX tumor growth and decreased the expression of Ki-67 and TOP I and increased the level of cleaved caspase-3 and H2A.XS139 expression. Taken together, our data suggested that HCPT inhibited ESCC growth, arrested cell cycle progression, and induced apoptosis both in vitro and in vivo via decreasing the expression and activity of TOP I enzyme.


1970 ◽  
Vol 48 (6) ◽  
pp. 1073-1077 ◽  
Author(s):  
Yu-Ho Chan ◽  
W. E. Sackston

Pectin methylesterase (PME), endopolygalacturonase (Endo-PG), exopolygalacturonase (Exo-PG), pectin trans-eliminase (PTE), polygalacturonase trans-eliminase (PGTE), cellulase, and cellobiase activities were investigated in culture filtrates of Sclerotium bataticola, and in extracts of inoculated and uninoculated sunflower stems. All of the enzymes except PTE were produced in culture filtrates of the pathogen and in diseased host tissues. Only PME was detected in healthy control plants.


1975 ◽  
Vol 21 (1) ◽  
pp. 35-41 ◽  
Author(s):  
J. M. Erskine ◽  
L. E. Lopatecki

Under carefully controlled laboratory conditions, a highly virulent strain of Erwinia amylovora coinhabited susceptible host tissues with a yellow saprophytic bacterium, which was invariably isolated from fire blight infected trees, with or without producing symptoms of the disease depending on the status of a number of environmental factors, both climatic and physiological. In particular, variation of temperature and sucrose concentration determined, independently, the equilibrium of a readily reversible alternation of predominance of the two bacteria.It is suggested that E. amylovora may sometimes exist as an avirulent resident on the surface or within healthy host plants when environmental conditions favor growth of the yellow saprophyte rather than the pathogen. Such conditions, which are more likely to be obtained in midsummer and the fall, include temperature fall or rise below or above the optimum for E. amylovora, decreased humidity or diminution of sap flow, and increased sugar content in the host tissues.


2009 ◽  
Vol 73 (3) ◽  
pp. 407-450 ◽  
Author(s):  
Angela H. Nobbs ◽  
Richard J. Lamont ◽  
Howard F. Jenkinson

SUMMARY Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a “coat of many colors,” enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.


Sign in / Sign up

Export Citation Format

Share Document