scholarly journals Long-term Colonization by Campylobacter jejuni Within a Human Host: Evolution, Antimicrobial Resistance, and Adaptation

2017 ◽  
Vol 217 (1) ◽  
pp. 103-111
Author(s):  
Samuel J Bloomfield ◽  
Anne C Midwinter ◽  
Patrick J Biggs ◽  
Nigel P French ◽  
Jonathan C Marshall ◽  
...  
mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Erin P. Price ◽  
Derek S. Sarovich ◽  
Mark Mayo ◽  
Apichai Tuanyok ◽  
Kevin P. Drees ◽  
...  

ABSTRACT Burkholderia pseudomallei causes the potentially fatal disease melioidosis. It is generally accepted that B. pseudomallei is a noncommensal bacterium and that any culture-positive clinical specimen denotes disease requiring treatment. Over a 23-year study of melioidosis cases in Darwin, Australia, just one patient from 707 survivors has developed persistent asymptomatic B. pseudomallei carriage. To better understand the mechanisms behind this unique scenario, we performed whole-genome analysis of two strains isolated 139 months apart. During this period, B. pseudomallei underwent several adaptive changes. Of 23 point mutations, 78% were nonsynonymous and 43% were predicted to be deleterious to gene function, demonstrating a strong propensity for positive selection. Notably, a nonsense mutation inactivated the universal stress response sigma factor RpoS, with pleiotropic implications. The genome underwent substantial reduction, with four deletions in chromosome 2 resulting in the loss of 221 genes. The deleted loci included genes involved in secondary metabolism, environmental survival, and pathogenesis. Of 14 indels, 11 occurred in coding regions and 9 resulted in frameshift mutations that dramatically affected predicted gene products. Disproportionately, four indels affected lipopolysaccharide biosynthesis and modification. Finally, we identified a frameshift mutation in both P314 isolates within wcbR, an important component of the capsular polysaccharide I locus, suggesting virulence attenuation early in infection. Our study illustrates a unique clinical case that contrasts a high-consequence infectious agent with a long-term commensal infection and provides further insights into bacterial evolution within the human host. IMPORTANCE Some bacterial pathogens establish long-term infections that are difficult or impossible to eradicate with current treatments. Rapid advances in genome sequencing technologies provide a powerful tool for understanding bacterial persistence within the human host. Burkholderia pseudomallei is considered a highly pathogenic bacterium because infection is commonly fatal. Here, we document within-host evolution of B. pseudomallei in a unique case of human infection with ongoing chronic carriage. Genomic comparison of isolates obtained 139 months (11.5 years) apart showed a strong signal of adaptation within the human host, including inactivation of virulence and immunogenic factors, and deletion of pathways involved in environmental survival. Two global regulatory genes were mutated in the 139-month isolate, indicating extensive regulatory changes favoring bacterial persistence. Our study provides insights into B. pseudomallei pathogenesis and, more broadly, identifies parallel evolutionary mechanisms that underlie chronic persistence of all bacterial pathogens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Medelin Ocejo ◽  
Beatriz Oporto ◽  
José Luis Lavín ◽  
Ana Hurtado

AbstractCampylobacter, a leading cause of gastroenteritis in humans, asymptomatically colonises the intestinal tract of a wide range of animals.Although antimicrobial treatment is restricted to severe cases, the increase of antimicrobial resistance (AMR) is a concern. Considering the significant contribution of ruminants as reservoirs of resistant Campylobacter, Illumina whole-genome sequencing was used to characterise the mechanisms of AMR in Campylobacter jejuni and Campylobacter coli recovered from beef cattle, dairy cattle, and sheep in northern Spain. Genome analysis showed extensive genetic diversity that clearly separated both species. Resistance genotypes were identified by screening assembled sequences with BLASTn and ABRicate, and additional sequence alignments were performed to search for frameshift mutations and gene modifications. A high correlation was observed between phenotypic resistance to a given antimicrobial and the presence of the corresponding known resistance genes. Detailed sequence analysis allowed us to detect the recently described mosaic tet(O/M/O) gene in one C. coli, describe possible new alleles of blaOXA-61-like genes, and decipher the genetic context of aminoglycoside resistance genes, as well as the plasmid/chromosomal location of the different AMR genes and their implication for resistance spread. Updated resistance gene databases and detailed analysis of the matched open reading frames are needed to avoid errors when using WGS-based analysis pipelines for AMR detection in the absence of phenotypic data.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 435
Author(s):  
Sada Raza ◽  
Kinga Matuła ◽  
Sylwia Karoń ◽  
Jan Paczesny

Antimicrobial resistance is a significant threat to human health worldwide, forcing scientists to explore non-traditional antibacterial agents to support rapid interventions and combat the emergence and spread of drug resistant bacteria. Many new antibiotic-free approaches are being developed while the old ones are being revised, resulting in creating unique solutions that arise at the interface of physics, nanotechnology, and microbiology. Specifically, physical factors (e.g., pressure, temperature, UV light) are increasingly used for industrial sterilization. Nanoparticles (unmodified or in combination with toxic compounds) are also applied to circumvent in vivo drug resistance mechanisms in bacteria. Recently, bacteriophage-based treatments are also gaining momentum due to their high bactericidal activity and specificity. Although the number of novel approaches for tackling the antimicrobial resistance crisis is snowballing, it is still unclear if any proposed solutions would provide a long-term remedy. This review aims to provide a detailed overview of how bacteria acquire resistance against these non-antibiotic factors. We also discuss innate bacterial defense systems and how bacteriophages have evolved to tackle them.


1982 ◽  
Vol 89 (1) ◽  
pp. 163-170 ◽  
Author(s):  
G. Norkrans ◽  
Å. Svedhem

SUMMARYAn epidemiological study onCampylobacter jejunienterocolitis was performed in an urban Swedish community. The study included 55 patients gathered during a six-month period. Forty-one of the 55 patients (75%) were infected outside Sweden. Campylobacter enterocolitis was rare among children within the country. Patients infected in Sweden had eaten chicken significantly more often than a corresponding control group. Seven out of nine chicken consuming campylobacter patients also had prepared the fresh chicken alone, and none of their family members became ill. Thus the preparation of food contaminated withCampylobacterseems to elevate the risk for contracting the disease. Sick household pets transmitted the campylobacter infection to two patients. Forty-six of the patients had a total of 85 close household members. Three definite secondary cases were found. There was no evidence of transmissionof Campylobacterby food prepared by two cooks who were working while still being asymptomatic excreters. Clinical reinfection withCampylobacterwas observed in one patient. No patients became long-term carriers ofCampylobacter.


2013 ◽  
Vol 49 (3) ◽  
pp. 228-236 ◽  
Author(s):  
Eun-Seon Hur ◽  
Po-Hyun Park ◽  
Jong-Hwa Kim ◽  
Jong-Sung Son ◽  
Hee-Jeong Yun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document