Effective inhibition of PBPs by cefepime and zidebactam in the presence of VIM-1 drives potent bactericidal activity against MBL-expressing Pseudomonas aeruginosa

2020 ◽  
Vol 75 (6) ◽  
pp. 1474-1478 ◽  
Author(s):  
Bartolome Moya ◽  
Sachin Bhagwat ◽  
Gabriel Cabot ◽  
German Bou ◽  
Mahesh Patel ◽  
...  

Abstract Objectives The combination of cefepime and the novel β-lactam enhancer zidebactam (WCK 5222) is under development for the treatment of difficult-to-treat Gram-negative infections. Against MBL-producing pathogens, cefepime and zidebactam induce cell elongation and spheroplast formation, indicating PBP3 and PBP2 dysfunction, respectively, having a potent bactericidal effect as a combination. The objective of the present study was to determine the mechanistic basis of the bactericidal effect of cefepime/zidebactam on MBL-expressing pathogens. Methods Pseudomonal PBP-binding affinities of cefepime, zidebactam and imipenem were assessed at different timepoints and also in the presence of purified VIM-1 using a Bocillin FL competition assay. The antibacterial activity of cefepime/zidebactam against three VIM-expressing Pseudomonas aeruginosa isolates was assessed by time–kill and neutropenic mouse lung/thigh infection studies. Results Amidst cefepime-hydrolysing concentrations of VIM-1, substantial cefepime binding to target PBPs was observed. High-affinity binding of zidebactam to PBP2 remained unaltered in the presence of VIM-1; however, MBL addition significantly affected imipenem PBP2 binding. Furthermore, the rate of cefepime binding to the primary target PBP3 was found to be higher compared with the imipenem PBP2 binding rate. Finally, complementary PBP inhibition by cefepime/zidebactam resulted in enhanced bactericidal activity in time–kill and neutropenic mouse lung/thigh infection studies against VIM-6-, VIM-10- and VIM-11-expressing P. aeruginosa, thus revealing the mechanistic basis of β-lactam enhancer action. Conclusions For the first time ever (to the best of our knowledge), this study demonstrates that in the presence of VIM-1 MBL, β-lactamase-labile cefepime and β-lactamase-stable zidebactam produce effective inhibition of respective target PBPs. For cefepime, this seems to be a result of a faster rate of PBP binding, which helps it overcome β-lactamase-mediated hydrolysis.

2014 ◽  
Vol 58 (9) ◽  
pp. 5297-5305 ◽  
Author(s):  
Tiffany R. Keepers ◽  
Marcela Gomez ◽  
Chris Celeri ◽  
Wright W. Nichols ◽  
Kevin M. Krause

ABSTRACTAvibactam, a non-β-lactam β-lactamase inhibitor with activity against extended-spectrum β-lactamases (ESBLs), KPC, AmpC, and some OXA enzymes, extends the antibacterial activity of ceftazidime against most ceftazidime-resistant organisms producing these enzymes. In this study, the bactericidal activity of ceftazidime-avibactam against 18Pseudomonas aeruginosaisolates and 15Enterobacteriaceaeisolates, including wild-type isolates and ESBL, KPC, and/or AmpC producers, was evaluated. Ceftazidime-avibactam MICs (0.016 to 32 μg/ml) were lower than those for ceftazidime alone (0.06 to ≥256 μg/ml) against all isolates except for 2P. aeruginosaisolates (1blaVIM-positive isolate and 1blaOXA-23-positive isolate). The minimum bactericidal concentration/MIC ratios of ceftazidime-avibactam were ≤4 for all isolates, indicating bactericidal activity. Human serum and human serum albumin had a minimal effect on ceftazidime-avibactam MICs. Ceftazidime-avibactam time-kill kinetics were evaluated at low MIC multiples and showed time-dependent reductions in the number of CFU/ml from 0 to 6 h for all strains tested. A ≥3-log10decrease in the number of CFU/ml was observed at 6 h for allEnterobacteriaceae, and a 2-log10reduction in the number of CFU/ml was observed at 6 h for 3 of the 6P. aeruginosaisolates. Regrowth was noted at 24 h for some of the isolates tested in time-kill assays. These data demonstrate the potent bactericidal activity of ceftazidime-avibactam and support the continued clinical development of ceftazidime-avibactam as a new treatment option for infections caused byEnterobacteriaceaeandP. aeruginosa, including isolates resistant to ceftazidime by mechanisms dependent on avibactam-sensitive β-lactamases.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Mette Kolpen ◽  
Christian J. Lerche ◽  
Kasper N. Kragh ◽  
Thomas Sams ◽  
Klaus Koren ◽  
...  

ABSTRACT Chronic Pseudomonas aeruginosa lung infection is characterized by the presence of endobronchial antibiotic-tolerant biofilm, which is subject to strong oxygen (O2) depletion due to the activity of surrounding polymorphonuclear leukocytes. The exact mechanisms affecting the antibiotic susceptibility of biofilms remain unclear, but accumulating evidence suggests that the efficacy of several bactericidal antibiotics is enhanced by stimulation of aerobic respiration of pathogens, while lack of O2 increases their tolerance. In fact, the bactericidal effect of several antibiotics depends on active aerobic metabolism activity and the endogenous formation of reactive O2 radicals (ROS). In this study, we aimed to apply hyperbaric oxygen treatment (HBOT) to sensitize anoxic P. aeruginosa agarose biofilms established to mimic situations with intense O2 consumption by the host response in the cystic fibrosis (CF) lung. Application of HBOT resulted in enhanced bactericidal activity of ciprofloxacin at clinically relevant durations and was accompanied by indications of restored aerobic respiration, involvement of endogenous lethal oxidative stress, and increased bacterial growth. The findings highlight that oxygenation by HBOT improves the bactericidal activity of ciprofloxacin on P. aeruginosa biofilm and suggest that bacterial biofilms are sensitized to antibiotics by supplying hyperbaric O2.


2006 ◽  
Vol 50 (2) ◽  
pp. 806-809 ◽  
Author(s):  
Giuseppantonio Maisetta ◽  
Giovanna Batoni ◽  
Semih Esin ◽  
Walter Florio ◽  
Daria Bottai ◽  
...  

ABSTRACT The antimicrobial activity of human β-defensin 3 (hBD-3) against multidrug-resistant clinical isolates of Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Acinetobacter baumannii was evaluated. A fast bactericidal effect (within 20 min) against all bacterial strains tested was observed. The presence of 20% human serum abolished the bactericidal activity of hBD-3 against gram-negative strains and reduced the activity of the peptide against gram-positive strains.


2014 ◽  
Vol 58 (3) ◽  
pp. 1757-1762 ◽  
Author(s):  
T. Tängdén ◽  
R. A. Hickman ◽  
P. Forsberg ◽  
P. Lagerbäck ◽  
C. G. Giske ◽  
...  

ABSTRACTCombination therapy is recommended for infections with carbapenemase-producingKlebsiella pneumoniae. However, limited data exist on which antibiotic combinations are the most effective. The aim of this study was to find effective antibiotic combinations against metallo-beta-lactamase-producingK. pneumoniae(MBL-KP). Two VIM- and two NDM-producingK. pneumoniaestrains, all susceptible to colistin, were exposed to antibiotics at clinically relevant static concentrations during 24-h time-kill experiments. Double- and triple-antibiotic combinations of aztreonam, ciprofloxacin, colistin, daptomycin, fosfomycin, meropenem, rifampin, telavancin, tigecycline, and vancomycin were used. Synergy was defined as a ≥2 log10decrease in CFU/ml between the combination and its most active drug after 24 h, and bactericidal effect was defined as a ≥3 log10decrease in CFU/ml after 24 h compared with the starting inoculum. Synergistic or bactericidal activity was demonstrated for aztreonam, fosfomycin, meropenem, and rifampin in double-antibiotic combinations with colistin and also for aztreonam, fosfomycin, and rifampin in triple-antibiotic combinations with meropenem and colistin. Overall, the combination of rifampin-meropenem-colistin was the most effective regimen, demonstrating synergistic and bactericidal effects against all four strains. Meropenem-colistin, meropenem-fosfomycin, and tigecycline-colistin combinations were not bactericidal against the strains used. The findings of this and other studies indicate that there is great potential of antibiotic combinations against carbapenemase-producingK. pneumoniae. However, our results deviate to some extent from those of previous studies, which might be because most studies to date have included KPC-producing rather than MBL-producing strains. More studies addressing MBL-KP are needed.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Bartolome Moya ◽  
Isabel M. Barcelo ◽  
Sachin Bhagwat ◽  
Mahesh Patel ◽  
German Bou ◽  
...  

ABSTRACT Zidebactam and WCK 5153 are novel β-lactam enhancers that are bicyclo-acyl hydrazides (BCH), derivatives of the diazabicyclooctane (DBO) scaffold, targeted for the treatment of serious infections caused by highly drug-resistant Gram-negative pathogens. In this study, we determined the penicillin-binding protein (PBP) inhibition profiles and the antimicrobial activities of zidebactam and WCK 5153 against Pseudomonas aeruginosa, including multidrug-resistant (MDR) metallo-β-lactamase (MBL)-producing high-risk clones. MIC determinations and time-kill assays were conducted for zidebactam, WCK 5153, and antipseudomonal β-lactams using wild-type PAO1, MexAB-OprM-hyperproducing (mexR), porin-deficient (oprD), and AmpC-hyperproducing (dacB) derivatives of PAO1, and MBL-expressing clinical strains ST175 (bla VIM-2) and ST111 (bla VIM-1). Furthermore, steady-state kinetics was used to assess the inhibitory potential of these compounds against the purified VIM-2 MBL. Zidebactam and WCK 5153 showed specific PBP2 inhibition and did not inhibit VIM-2 (apparent Ki [Ki app] > 100 μM). MICs for zidebactam and WCK 5153 ranged from 2 to 32 μg/ml (amdinocillin MICs > 32 μg/ml). Time-kill assays revealed bactericidal activity of zidebactam and WCK 5153. LIVE-DEAD staining further supported the bactericidal activity of both compounds, showing spheroplast formation. Fixed concentrations (4 or 8 μg/ml) of zidebactam and WCK 5153 restored susceptibility to all of the tested β-lactams for each of the P. aeruginosa mutant strains. Likewise, antipseudomonal β-lactams (CLSI breakpoints), in combination with 4 or 8 μg/ml of zidebactam or WCK 5153, resulted in enhanced killing. Certain combinations determined full bacterial eradication, even with MDR MBL-producing high-risk clones. β-Lactam–WCK enhancer combinations represent a promising β-lactam “enhancer-based” approach to treat MDR P. aeruginosa infections, bypassing the need for MBL inhibition.


2021 ◽  
Author(s):  
Yongtao Xiao ◽  
weipeng wang ◽  
Ying lu ◽  
xinbei tian ◽  
shanshan chen ◽  
...  

Salmonella Typhimurium is gram-negative flagellated bacteria that can cause food-borne gastroenteritis and diarrhea in humans and animals. The regenerating islet-derived family member 4 (Reg4) is overexpressed in the gastrointestinal tract during intestinal inflammation. However, the role of Reg4 in the intestinal inflammation induced by Salmonella Typhimurium is largely unknown. In this study, we reported for the first time that Reg4 has bactericidal activity against intestinal infection caused by Salmonella Typhimurium. In vivo, Reg4 could reduce the colonization of Salmonella Typhimurium and attenuate intestinal inflammation in the Salmonella Typhimurium-infected model. Additionally, the mice with the epithelial cell specific deletion of Reg4 (Reg4ΔIEC) exhibited more severe intestinal inflammation and more colonization of Salmonella Typhimurium. However, the administration of Reg4 could reverse these negative impacts. In vitro, Reg4 protein was showed to inhibit the growth of Salmonella Typhimurium. We further investigate the function motif of Reg4 and find that the "HDPQK" motif in Reg4 is essential to its bactericidal activity. Reg4 exerted the bactericidal effect by binding to the flagellin of Salmonella Typhimurium and suppressing its motility, adhesion, and invasion to the intestinal epithelia. In conclusion, our findings identify Reg4 as a novel antimicrobial peptide against infection by Salmonella Typhimurium and explore its possible mechanism, which may be of great significance for developing novel agents against flagellated micro pathogens.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
S. S. Bhagwat ◽  
H. Periasamy ◽  
S. S. Takalkar ◽  
S. R. Palwe ◽  
H. N. Khande ◽  
...  

ABSTRACTWCK 5222 is a combination of cefepime and the high-affinity PBP2-binding β-lactam enhancer zidebactam. The cefepime-zidebactam combination is active against multidrug-resistant Gram-negative bacteria, including carbapenemase-expressingAcinetobacter baumannii. The mechanism of action of the combination involves concurrent multiple penicillin binding protein inhibition, leading to the enhanced bactericidal action of cefepime. The aim of the present study was to assess the impact of the zidebactam-mediated enhancedin vitrobactericidal action in modulating the percentage of the time that the free drug concentration remains above the MIC (percentfT>MIC) for cefepime required for thein vivokilling ofA. baumannii. Cefepime and cefepime-zidebactam MICs were comparable and ranged from 2 to 16 mg/liter for theA. baumanniistrains (n = 5) employed in the study. Time-kill studies revealed the improved killing of these strains by the cefepime-zidebactam combination compared to that by the constituents alone. Employing a neutropenic mouse lung infection model, exposure-response analyses for all theA. baumanniistrains showed that the cefepimefT>MIC required for 1-log10kill was 38.9%. In the presence of a noneffective dose of zidebactam, the cefepimefT>MIC requirement dropped significantly to 15.5%, but it still rendered a 1-log10kill effect. Thus, zidebactam mediated the improvement in cefepime’s bactericidal effect observed in time-kill studies, manifestedin vivothrough the lowering of cefepime’s pharmacodynamic requirement. This is a first-ever study demonstrating a β-lactam enhancer role of zidebactam that helps augment thein vivoactivity of cefepime by reducing the magnitude of its pharmacodynamically relevant exposures againstA. baumannii.


2013 ◽  
Vol 57 (6) ◽  
pp. 2831-2833 ◽  
Author(s):  
Jose M. Munita ◽  
Truc T. Tran ◽  
Lorena Diaz ◽  
Diana Panesso ◽  
Jinnethe Reyes ◽  
...  

ABSTRACTThe genetic bases for antibiotic tolerance are obscure. Daptomycin (DAP) is a lipopeptide antibiotic with bactericidal activity against enterococci. Using time-kill assays, we provide evidence for the first time that a deletion of isoleucine in position 177 of LiaF, a member of the three-component regulatory system LiaFSR involved in the cell envelope response to antimicrobials, is directly responsible for a DAP-tolerant phenotype and is likely to negatively affect response to DAP therapy.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Cristina García-de-la-Mària ◽  
Oriol Gasch ◽  
Javier García-Gonzalez ◽  
Dolors Soy ◽  
Evelyn Shaw ◽  
...  

ABSTRACTWe investigated whether the addition of fosfomycin or cloxacillin to daptomycin provides better outcomes in the treatment of methicillin-resistantStaphylococcus aureus(MRSA) experimental aortic endocarditis in rabbits. Five MRSA strains were used to performin vitrotime-kill studies using standard (106) and high (108) inocula. Combined therapy was compared to daptomycin monotherapy treatment in the MRSA experimental endocarditis model. A human-like pharmacokinetics model was applied, and the equivalents of cloxacillin at 2 g/4 h, fosfomycin at 2 g/6 h, and daptomycin at 6 to 10 mg/kg/day were administered intravenously. A combination of daptomycin and either fosfomycin or cloxacillin was synergistic in the five strains tested at both inocula. A bactericidal effect was detected in four of five strains tested with both combinations. The MRSA-277 strain (vancomycin MIC, 2 μg/ml) was used for the experimental endocarditis model. Daptomycin plus fosfomycin significantly improved the efficacy of daptomycin monotherapy at 6 mg/kg/day in terms of both the proportion of sterile vegetations (100% versus 72%,P= 0.046) and the decrease in the density of bacteria within the vegetations (P= 0.025). Daptomycin plus fosfomycin was as effective as daptomycin monotherapy at 10 mg/kg/day (100% versus 93%,P= 1.00) and had activity similar to that of daptomycin plus cloxacillin when daptomycin was administered at 6 mg/kg/day (100% versus 88%,P= 0.48). Daptomycin nonsusceptibility was not detected in any of the isolates recovered from vegetations. In conclusion, for the treatment of MRSA experimental endocarditis, the combination of daptomycin plus fosfomycin showed synergistic and bactericidal activity.


1999 ◽  
Vol 43 (12) ◽  
pp. 3033-3035 ◽  
Author(s):  
David P. Nicolau ◽  
Mary Anne Banevicius ◽  
Charles H. Nightingale ◽  
Richard Quintiliani

ABSTRACT While a time-kill methodology noted no appreciable improvement in bactericidal activity with the addition of azithromycin (AZM) to a ceftazidime (CAZ) regimen, data from the murine pneumonia model showed that the addition of AZM significantly improved survival compared to treatment with CAZ alone. These data suggest that AZM might be a useful adjunctive therapy in the management of pneumonia resulting from mucoid isolates of Pseudomonas aeruginosa.


Sign in / Sign up

Export Citation Format

Share Document