scholarly journals Reg4 defenses the intestine against Salmonella infection via binding the flagellin

2021 ◽  
Author(s):  
Yongtao Xiao ◽  
weipeng wang ◽  
Ying lu ◽  
xinbei tian ◽  
shanshan chen ◽  
...  

Salmonella Typhimurium is gram-negative flagellated bacteria that can cause food-borne gastroenteritis and diarrhea in humans and animals. The regenerating islet-derived family member 4 (Reg4) is overexpressed in the gastrointestinal tract during intestinal inflammation. However, the role of Reg4 in the intestinal inflammation induced by Salmonella Typhimurium is largely unknown. In this study, we reported for the first time that Reg4 has bactericidal activity against intestinal infection caused by Salmonella Typhimurium. In vivo, Reg4 could reduce the colonization of Salmonella Typhimurium and attenuate intestinal inflammation in the Salmonella Typhimurium-infected model. Additionally, the mice with the epithelial cell specific deletion of Reg4 (Reg4ΔIEC) exhibited more severe intestinal inflammation and more colonization of Salmonella Typhimurium. However, the administration of Reg4 could reverse these negative impacts. In vitro, Reg4 protein was showed to inhibit the growth of Salmonella Typhimurium. We further investigate the function motif of Reg4 and find that the "HDPQK" motif in Reg4 is essential to its bactericidal activity. Reg4 exerted the bactericidal effect by binding to the flagellin of Salmonella Typhimurium and suppressing its motility, adhesion, and invasion to the intestinal epithelia. In conclusion, our findings identify Reg4 as a novel antimicrobial peptide against infection by Salmonella Typhimurium and explore its possible mechanism, which may be of great significance for developing novel agents against flagellated micro pathogens.

2017 ◽  
Vol 66 (2) ◽  
pp. 259-263 ◽  
Author(s):  
Stanisława Tylewska-Wierzbanowska ◽  
Urszula Roguska ◽  
Grażyna Lewandowska ◽  
Tomasz Chmielewski

The aim of our studies was to invent a reliable method for detection of bactericidal activity of disinfectants against Borrelia burgdorferi in suspension (in vitro) and in cell line cultures (in vivo). In the suspension method, 0.01 % octenidine at 20°C and 35°C was bactericidal to Borrelia afzeli; Borrelia garini, B. burgdorferi sensu stricto after 5 minutes treatment. Increase of the temperature to 35°C speed up the bactericidal effect to 1 minute. The bactericidal action of octenidine towards B. burgdorferi spirochetes growing in fibroblasts was less effective and needed a longer time to kill them than in the suspension.


Author(s):  
Shuanghua Luo ◽  
Xi Yang ◽  
Shuyan Wu ◽  
Minmin Liu ◽  
Xiujuan Zhang ◽  
...  

Beef is rich in various nutrients while easily spoils due to contamination by pathogens, thus it is of great significance to develop a bactericidal method to inactivate meat-borne pathogens and meanwhile maintain the freshness of beef. For the first time, the present study investigated the bactericidal effect of blue light (BL) at 415 nm against four meat-borne pathogens (methicillin-resistant Staphylococcus aureus , Escherichia coli , Salmonella Typhimurium and Listeria monocytogenes ) in vitro and inoculated on the surface of fresh beef, respectively. When the non-illuminated beef was used as control, the population of the four pathogens did not change significantly ( P > 0.05), while BL-illuminated beef showed dose-dependent inactivation effect in both in vitro and in vivo studies. The experiments on beef cuts showed that 109.44 J/cm 2 of BL inactivated 90% of inoculated cells for the tested strains ( P < 0.05), and the impact of BL inactivation could be sustained in 7 days of cold storage. Notably, changes of lipid oxidation rate, water holding capacity and cooking loss value between the control and beef illuminated by 109.44 J/cm 2 at the same time were scarcely detected during the storage. BL had a minor but insignificant influence on surface color and free amino acid content. Moreover, the pH of illuminated beef increased slower ( P < 0.05) than that of non-illuminated beef. The present work demonstrated that BL could be a novel bactericidal and freshness-maintaining method for fresh beef.


2018 ◽  
Author(s):  
Fangfang Bai ◽  
Ryan M. McCormack ◽  
Suzanne Hower ◽  
Gregory V. Plano ◽  
Mathias G. Lichtenheld ◽  
...  

AbstractPerforin-2, the product of the MPEG1 gene, limits the spread and dissemination of bacterial pathogens in vivo. It is highly expressed in murine and human phagocytes, and macrophages lacking Perforin-2 are compromised in their ability to kill phagocytosed bacteria. In this study we used Salmonella typhimurium as a model intracellular pathogen to elucidate the mechanism of Perforin-2‘s bactericidal activity. In vitro Perforin-2 was found to facilitate the degradation of antigens contained within the envelope of phagocytosed bacteria. In contrast, degradation of a representative surface antigen was found to be independent of Perforin-2. Consistent with our in vitro results a protease sensitive, periplasmic superoxide disumutase (SodCII) contributed to the virulence of S. typhimurium in Perforin-2 knockout but not wild-type mice. In aggregate our studies indicate that Perforin-2 breaches the envelope of phagocytosed bacteria facilitating the delivery of proteases and other antimicrobial effectors to sites within the bacterial envelope.


2019 ◽  
Author(s):  
Weijie Chen ◽  
Arpan De ◽  
Hao Li ◽  
Justin R. Wright ◽  
Regina Lamendella ◽  
...  

SummaryBacterial swarming, a collective movement on a surface, has rarely been associated with human pathophysiology. Here, we report for the first time that bacterial swarmers are associated with protection against intestinal inflammation. We show that bacterial swarmers are highly predictive of intestinal stress in mice and humans. We isolated a novel Enterobacter swarming strain, SM3, from mouse feces. SM3 and other known commensal swarmers contrast to their respective swarming-deficient, but swimming-competent isogenic strains abrogated intestinal inflammation in mice. Treatment of colitic mice with SM3, but not its mutants, enriched beneficial fecal anaerobes belonging to the family, Bacteroidales S24-7. We observed SM3 swarming associated pathways in the in vivo fecal metatranscriptomes. In vitro growth of S24-7 was enriched in presence of SM3 or its mutants conjecturing that bacterial swarming in vivo might influence SM3’s access to S24-7 in the intestines. Overall, our work identifies a new paradigm in which intestinal stress allows for the emergence of swarming bacteria, which can counterintuitively heal intestinal inflammation.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 819
Author(s):  
Nicolai Rügen ◽  
Timothy P. Jenkins ◽  
Natalie Wielsch ◽  
Heiko Vogel ◽  
Benjamin-Florian Hempel ◽  
...  

Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.


2021 ◽  
Vol 22 (5) ◽  
pp. 2530
Author(s):  
Bijean D. Ford ◽  
Diego Moncada Giraldo ◽  
Camilla Margaroli ◽  
Vincent D. Giacalone ◽  
Milton R. Brown ◽  
...  

Cystic fibrosis (CF) lung disease is dominated by the recruitment of myeloid cells (neutrophils and monocytes) from the blood which fail to clear the lung of colonizing microbes. In prior in vitro studies, we showed that blood neutrophils migrated through the well-differentiated lung epithelium into the CF airway fluid supernatant (ASN) mimic the dysfunction of CF airway neutrophils in vivo, including decreased bactericidal activity despite an increased metabolism. Here, we hypothesized that, in a similar manner to neutrophils, blood monocytes undergo significant adaptations upon recruitment to CFASN. To test this hypothesis, primary human blood monocytes were transmigrated in our in vitro model into the ASN from healthy control (HC) or CF subjects to mimic in vivo recruitment to normal or CF airways, respectively. Surface phenotype, metabolic and bacterial killing activities, and transcriptomic profile by RNA sequencing were quantified post-transmigration. Unlike neutrophils, monocytes were not metabolically activated, nor did they show broad differences in activation and scavenger receptor expression upon recruitment to the CFASN compared to HCASN. However, monocytes recruited to CFASN showed decreased bactericidal activity. RNASeq analysis showed strong effects of transmigration on monocyte RNA profile, with differences between CFASN and HCASN conditions, notably in immune signaling, including lower expression in the former of the antimicrobial factor ISG15, defensin-like chemokine CXCL11, and nitric oxide-producing enzyme NOS3. While monocytes undergo qualitatively different adaptations from those seen in neutrophils upon recruitment to the CF airway microenvironment, their bactericidal activity is also dysregulated, which could explain why they also fail to protect CF airways from infection.


2021 ◽  
Author(s):  
Lijuan Liu ◽  
Shengting Zhang ◽  
Xiaodan Zheng ◽  
Hongmei Li ◽  
Qi Chen ◽  
...  

Fusobacterium nucleatum has been employed for the first time to synthesize fluorescent carbon dots which could be applied for the determination of Fe3+ ions in living cells and bioimaging in vitro and in vivo with excellent biocompatibility.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tong Chen ◽  
Qiang Chu ◽  
Mengyang Li ◽  
Gaorong Han ◽  
Xiang Li

AbstractElectrodynamic therapy (EDT) has recently emerged as a potential external field responsive approach for tumor treatment. While it presents a number of clear superiorities, EDT inherits the intrinsic challenges of current reactive oxygen species (ROS) based therapeutic treatments owing to the complex tumor microenvironment, including glutathione (GSH) overexpression, acidity and others. Herein for the first time, iron oxide nanoparticles are decorated using platinum nanocrystals (Fe3O4@Pt NPs) to integrate the current EDT with chemodynamic phenomenon and GSH depletion. Fe3O4@Pt NPs can effectively induce ROS generation based on the catalytic reaction on the surface of Pt nanoparticles triggered by electric field (E), and meanwhile it may catalyze intracellular H2O2 into ROS via Fenton reaction. In addition, Fe3+ ions released from Fe3O4@Pt NPs under the acidic condition in tumor cells consume GSH in a rapid fashion, inhibiting ROS clearance to enhance its antitumor efficacy. As a result, considerable in vitro and in vivo tumor inhibition phenomena are observed. This study has demonstrated an alternative concept of combinational therapeutic modality with superior efficacy.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miao-Miao Zhao ◽  
Wei-Li Yang ◽  
Fang-Yuan Yang ◽  
Li Zhang ◽  
Wei-Jin Huang ◽  
...  

AbstractTo discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jakob Weglage ◽  
Friederike Wolters ◽  
Laura Hehr ◽  
Jakob Lichtenberger ◽  
Celina Wulz ◽  
...  

AbstractSchistosomiasis (bilharzia) is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, with considerable morbidity in parts of the Middle East, South America, Southeast Asia, in sub-Saharan Africa, and particularly also in Europe. The WHO describes an increasing global health burden with more than 290 million people threatened by the disease and a potential to spread into regions with temperate climates like Corsica, France. The aim of our study was to investigate the influence of S. mansoni infection on colorectal carcinogenic signaling pathways in vivo and in vitro. S. mansoni infection, soluble egg antigens (SEA) and the Interleukin-4-inducing principle from S. mansoni eggs induce Wnt/β-catenin signaling and the protooncogene c-Jun as well as downstream factor Cyclin D1 and markers for DNA-damage, such as Parp1 and γH2a.x in enterocytes. The presence of these characteristic hallmarks of colorectal carcinogenesis was confirmed in colon biopsies from S. mansoni-infected patients demonstrating the clinical relevance of our findings. For the first time it was shown that S. mansoni SEA may be involved in the induction of colorectal carcinoma-associated signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document