scholarly journals Role of low-level quinolone resistance in generating tolerance in Escherichia coli under therapeutic concentrations of ciprofloxacin

Author(s):  
M Ortiz-Padilla ◽  
S Diaz-Diaz ◽  
J Machuca ◽  
A Tejada-Gonzalez ◽  
E Recacha ◽  
...  

Abstract Background Tolerance (including persistence) and resistance result in increased survival under antibiotic pressure. Objectives We evaluated the interplay between resistance and tolerance to ciprofloxacin under therapeutic and killing conditions to determine the contribution of low-level quinolone resistance (LLQR) mechanisms to tolerance. We also determined how the interaction between resistance (LLQR phenotypes) and tolerance was modified under SOS response suppression. Methods Twelve isogenic Escherichia coli strains harbouring quinolone resistance mechanisms combined with SOS response deficiency and six clinical E. coli isolates (LLQR or non-LLQR) were evaluated. Survival (tolerance or persistence) assays were used to measure surviving bacteria after a short period (up to 4 h) of bactericidal antibiotic treatment under therapeutic and killing concentrations of ciprofloxacin [1 mg/L, EUCAST/CLSI breakpoint for resistance; and 2.5 mg/L, peak serum concentration (Cmax) of this drug]. Results QRDR substitutions (S83L in GyrA alone or combined with S80R in ParC) significantly increased the fraction of tolerant bacteria (2–4 log10 cfu/mL) after exposure to ciprofloxacin at clinically relevant concentrations. The impact on tolerant bacteria due to SOS response suppression (including persistence mediated by the tisB gene) was reversed by LLQR mechanisms at therapeutic concentrations. Furthermore, no reduction in the fraction of tolerant bacteria due to SOS response suppression was observed when S83L in GyrA plus S80R in ParC were combined. Conclusions Tolerance and quinolone resistance mutations interact synergistically, giving LLQR mechanisms an additional role in allowing bacterial survival and evasion of therapeutic antimicrobial conditions by a combination of the two strategies. At clinically relevant concentrations, LLQR mechanisms reverse further impact of SOS response suppression in reducing bacterial tolerance.

Author(s):  
Fabiola Puértolas-Balint ◽  
Omar Warsi ◽  
Marius Linkevicius ◽  
Po-Cheng Tang ◽  
Dan I Andersson

Abstract Objectives To determine the mechanism of resistance to the antibiotic nitroxoline in Escherichia coli. Methods Spontaneous nitroxoline-resistant mutants were selected at different concentrations of nitroxoline. WGS and strain reconstruction were used to define the genetic basis for the resistance. The mechanistic basis of resistance was determined by quantitative PCR (qPCR) and by overexpression of target genes. Fitness costs of the resistance mutations and cross-resistance to other antibiotics were also determined. Results Mutations in the transcriptional repressor emrR conferred low-level resistance to nitroxoline [nitroxoline MIC (MICNOX) = 16 mg/L] by increasing the expression of the emrA and emrB genes of the EmrAB-TolC efflux pump. These resistant mutants showed no fitness reduction and displayed cross-resistance to nalidixic acid. Second-step mutants with higher-level resistance (MICNOX = 32–64 mg/L) had mutations in the emrR gene, together with either a 50 kb amplification, a mutation in the gene marA, or an IS upstream of the lon gene. The latter mutations resulted in higher-level nitroxoline resistance due to increased expression of the tolC gene, which was confirmed by overexpressing tolC from an inducible plasmid in a low-level resistance mutant. Furthermore, the emrR mutations conferred a small increase in resistance to nitrofurantoin only when combined with an nfsAB double-knockout mutation. However, nitrofurantoin-resistant nfsAB mutants showed no cross-resistance to nitroxoline. Conclusions Mutations in different genes causing increased expression of the EmrAB-TolC pump lead to an increased resistance to nitroxoline. The structurally similar antibiotics nitroxoline and nitrofurantoin appear to have different modes of action and resistance mechanisms.


Author(s):  
J Machuca ◽  
E Recacha ◽  
B Gallego-Mesa ◽  
S Diaz-Diaz ◽  
G Rojas-Granado ◽  
...  

Abstract Background SOS response suppression (by RecA inactivation) has been postulated as a therapeutic strategy for potentiating antimicrobials against Enterobacterales. Objectives To evaluate the impact of RecA inactivation on the reversion and evolution of quinolone resistance using a collection of Escherichia coli clinical isolates. Methods Twenty-three E. coli clinical isolates, including isolates belonging to the high-risk clone ST131, were included. SOS response was suppressed by recA inactivation. Susceptibility to fluoroquinolones was determined by broth microdilution, growth curves and killing curves. Evolution of quinolone resistance was evaluated by mutant frequency and mutant prevention concentration (MPC). Results RecA inactivation resulted in 2–16-fold reductions in fluoroquinolone MICs and modified EUCAST clinical category for several isolates, including ST131 clone isolates. Growth curves and time–kill curves showed a clear disadvantage (up to 10 log10 cfu/mL after 24 h) for survival in strains with an inactivated SOS system. For recA-deficient mutants, MPC values decreased 4–8-fold, with values below the maximum serum concentration of ciprofloxacin. RecA inactivation led to a decrease in mutant frequency (≥103-fold) compared with isolates with unmodified SOS responses at ciprofloxacin concentrations of 4×MIC and 1 mg/L. These effects were also observed in ST131 clone isolates. Conclusions While RecA inactivation does not reverse existing resistance, it is a promising strategy for increasing the effectiveness of fluoroquinolones against susceptible clinical isolates, including high-risk clone isolates.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Giorgio Mattiuz ◽  
Sabrina Nicolò ◽  
Alberto Antonelli ◽  
Tommaso Giani ◽  
Ilaria Baccani ◽  
...  

ABSTRACT MCR-1 is a plasmid-encoded phosphoethanolamine transferase able to modify the lipid A structure. It confers resistance to colistin and was isolated from human, animal, and environmental strains of Enterobacteriaceae, raising serious global health concerns. In this paper, we used recombinant mcr-1-expressing Escherichia coli to study the impact of MCR-1 products on E. coli-induced activation of inflammatory pathways in activated THP-1 cells, which was used as a model of human macrophages. We found that infection with recombinant mcr-1-expressing E. coli significantly modulated p38-MAPK and Jun N-terminal protein kinase (JNK) activation and pNF-κB nuclear translocation as well as the expression of genes for the relevant proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and IL-1β compared with mcr-1-negative strains. Caspase-1 activity and IL-1β secretion were significantly less activated by mcr-1-positive E. coli strains than the mcr-1-negative parental strain. Similar results were obtained with clinical isolates of mcr-1-positive E. coli, suggesting that, in addition to colistin resistance, the expression of mcr-1 allows the escape of early host innate defenses and may promote bacterial survival.


Author(s):  
Elizabeth B Lewis ◽  
Edwin Chen ◽  
Matthew J Culyba

Abstract The bacterial DNA damage response pathway (SOS response) is composed of a network of genes regulated by a single transcriptional repressor, LexA. The lexA promoter, itself, contains two LexA operators, enabling negative feedback. In Escherichia coli, the downstream operator contains a conserved DNA cytosine methyltransferase (Dcm) site that is predicted to be methylated to 5-methylcytosine (5mC) specifically during stationary phase growth, suggesting a regulatory role for DNA methylation in the SOS response. To test this, we quantified 5mC at the lexA locus, and then examined the effect of LexA on Dcm activity, as well as the impact of this 5mC mark on LexA binding, lexA transcription, and SOS response induction. We found that 5mC at the lexA promoter is specific to stationary phase growth, but that it does not affect lexA expression. Our data support a model where LexA binding at the promoter inhibits Dcm activity without an effect on the SOS regulon.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
E. Recacha ◽  
J. Machuca ◽  
P. Díaz de Alba ◽  
M. Ramos-Güelfo ◽  
F. Docobo-Pérez ◽  
...  

ABSTRACT Suppression of the SOS response has been postulated as a therapeutic strategy for potentiating antimicrobial agents. We aimed to evaluate the impact of its suppression on reversing resistance using a model of isogenic strains of Escherichia coli representing multiple levels of quinolone resistance. E. coli mutants exhibiting a spectrum of SOS activity were constructed from isogenic strains carrying quinolone resistance mechanisms with susceptible and resistant phenotypes. Changes in susceptibility were evaluated by static (MICs) and dynamic (killing curves or flow cytometry) methodologies. A peritoneal sepsis murine model was used to evaluate in vivo impact. Suppression of the SOS response was capable of resensitizing mutant strains with genes encoding three or four different resistance mechanisms (up to 15-fold reductions in MICs). Killing curve assays showed a clear disadvantage for survival (Δlog10 CFU per milliliter [CFU/ml] of 8 log units after 24 h), and the in vivo efficacy of ciprofloxacin was significantly enhanced (Δlog10 CFU/g of 1.76 log units) in resistant strains with a suppressed SOS response. This effect was evident even after short periods (60 min) of exposure. Suppression of the SOS response reverses antimicrobial resistance across a range of E. coli phenotypes from reduced susceptibility to highly resistant, playing a significant role in increasing the in vivo efficacy. IMPORTANCE The rapid rise of antibiotic resistance in bacterial pathogens is now considered a major global health crisis. New strategies are needed to block the development of resistance and to extend the life of antibiotics. The SOS response is a promising target for developing therapeutics to reduce the acquisition of antibiotic resistance and enhance the bactericidal activity of antimicrobial agents such as quinolones. Significant questions remain regarding its impact as a strategy for the reversion or resensitization of antibiotic-resistant bacteria. To address this question, we have generated E. coli mutants that exhibited a spectrum of SOS activity, ranging from a natural SOS response to a hypoinducible or constitutively suppressed response. We tested the effects of these mutations on quinolone resistance reversion under therapeutic concentrations in a set of isogenic strains carrying different combinations of chromosome- and plasmid-mediated quinolone resistance mechanisms with susceptible, low-level quinolone resistant, resistant, and highly resistant phenotypes. Our comprehensive analysis opens up a new strategy for reversing drug resistance by targeting the SOS response. IMPORTANCE The rapid rise of antibiotic resistance in bacterial pathogens is now considered a major global health crisis. New strategies are needed to block the development of resistance and to extend the life of antibiotics. The SOS response is a promising target for developing therapeutics to reduce the acquisition of antibiotic resistance and enhance the bactericidal activity of antimicrobial agents such as quinolones. Significant questions remain regarding its impact as a strategy for the reversion or resensitization of antibiotic-resistant bacteria. To address this question, we have generated E. coli mutants that exhibited a spectrum of SOS activity, ranging from a natural SOS response to a hypoinducible or constitutively suppressed response. We tested the effects of these mutations on quinolone resistance reversion under therapeutic concentrations in a set of isogenic strains carrying different combinations of chromosome- and plasmid-mediated quinolone resistance mechanisms with susceptible, low-level quinolone resistant, resistant, and highly resistant phenotypes. Our comprehensive analysis opens up a new strategy for reversing drug resistance by targeting the SOS response.


2002 ◽  
Vol 46 (5) ◽  
pp. 1535-1539 ◽  
Author(s):  
Joseph F. Petrosino ◽  
Amanda R. Pendleton ◽  
Joel H. Weiner ◽  
Susan M. Rosenberg

ABSTRACT In some enterobacterial pathogens, but not in Escherichia coli, loss-of-function mutations in the ampD gene are a common route to β-lactam antibiotic resistance. We constructed an assay system for studying mechanism(s) of enterobacterial ampD mutation using the well-developed genetics of E. coli. We integrated the Enterobacter ampRC genes into the E. coli chromosome. These cells acquire spontaneous recombination- and SOS response-independent β-lactam resistance mutations in ampD. This chromosomal system is useful for studying mutation mechanisms that promote antibiotic resistance.


2009 ◽  
Vol 53 (10) ◽  
pp. 4292-4297 ◽  
Author(s):  
Nicolas Allou ◽  
Emmanuelle Cambau ◽  
Laurent Massias ◽  
Françoise Chau ◽  
Bruno Fantin

ABSTRACT We investigated the impact of low-level resistance to fluoroquinolones on the bactericidal activity of ciprofloxacin in a murine model of urinary tract infection. The susceptible Escherichia coli strain CFT073 (ciprofloxacin MIC [CIP MIC] of 0.008 μg/ml) was compared to its transconjugants harboring qnrA1 or qnrS1 and to an S83L gyrA mutant. The three derivatives showed similar low-level resistance to fluoroquinolones (CIP MICs, 0.25 to 0.5 μg/ml). Bactericidal activity measured in vitro after 1, 3, and 6 h of exposure to 0.5 μg/ml of ciprofloxacin was significantly lower for the derivative strains (P < 0.01). In the murine model of urinary tract infection (at least 45 mice inoculated per strain), mice were treated with a ciprofloxacin regimen of 2.5 mg/kg, given subcutaneously twice daily for 2 days. In mice infected with the susceptible strain, ciprofloxacin significantly decreased viable bacterial counts (log10 CFU/g of tissue) in the bladder (4.2 ± 0.5 versus 5.5 ± 1.3; P = 0.001) and in the kidney (3.6 ± 0.8 versus 5.0 ± 1.1; P = 0.003) compared with those of untreated mice. In contrast, no significant decrease in viable bacterial counts was observed with any of the three derivative strains. The area under the concentration-time curve from 0 to 24 h/MIC and the maximum concentration of drug in serum/MIC ratios measured in plasma were indeed equal to 827 and 147, respectively, for the parental strain, and only 12.4 to 24.8 and 2.2 to 4.4, respectively, for the derivative strains. In conclusion, low-level resistance to fluoroquinolones conferred by a qnr gene is associated with decreased bactericidal activity of ciprofloxacin, similar to that obtained with a gyrA mutation.


2005 ◽  
Vol 49 (2) ◽  
pp. 801-803 ◽  
Author(s):  
Mami Hata ◽  
Masahiro Suzuki ◽  
Masakado Matsumoto ◽  
Masao Takahashi ◽  
Katsuhiko Sato ◽  
...  

ABSTRACT A novel gene for quinolone resistance was cloned from a transferable plasmid carried by a clinical isolate of Shigella flexneri 2b that was resistant to fluoroquinolones. The plasmid conferred low-level resistance to quinolones on Escherichia coli HB101. The protein encoded by the gene showed 59% amino acid identity with Qnr.


Sign in / Sign up

Export Citation Format

Share Document