scholarly journals The carbon source influences the efflux pump-mediated antimicrobial resistance in clinically important Gram-negative bacteria

2012 ◽  
Vol 67 (4) ◽  
pp. 921-927 ◽  
Author(s):  
N. A. Villagra ◽  
J. A. Fuentes ◽  
M. R. Jofre ◽  
A. A. Hidalgo ◽  
P. Garcia ◽  
...  
2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


2013 ◽  
Vol 7 (1) ◽  
pp. 72-82 ◽  
Author(s):  
Marta Martins ◽  
Matthew P McCusker ◽  
Miguel Viveiros ◽  
Isabel Couto ◽  
Séamus Fanning ◽  
...  

It is known that bacteria showing a multi-drug resistance phenotype use several mechanisms to overcome the action of antibiotics. As a result, this phenotype can be a result of several mechanisms or a combination of thereof. The main mechanisms of antibiotic resistance are: mutations in target genes (such as DNA gyrase and topoisomerase IV); over-expression of efflux pumps; changes in the cell envelope; down regulation of membrane porins, and modified lipopolysaccharide component of the outer cell membrane (in the case of Gram-negative bacteria). In addition, adaptation to the environment, such as quorum sensing and biofilm formation can also contribute to bacterial persistence. Due to the rapid emergence and spread of bacterial isolates showing resistance to several classes of antibiotics, methods that can rapidly and efficiently identify isolates whose resistance is due to active efflux have been developed. However, there is still a need for faster and more accurate methodologies. Conventional methods that evaluate bacterial efflux pump activity in liquid systems are available. However, these methods usually use common efflux pump substrates, such as ethidium bromide or radioactive antibiotics and therefore, require specialized instrumentation, which is not available in all laboratories. In this review, we will report the results obtained with the Ethidium Bromide-agar Cartwheel method. This is an easy, instrument-free, agar based method that has been modified to afford the simultaneous evaluation of as many as twelve bacterial strains. Due to its simplicity it can be applied to large collections of bacteria to rapidly screen for multi-drug resistant isolates that show an over-expression of their efflux systems. The principle of the method is simple and relies on the ability of the bacteria to expel a fluorescent molecule that is substrate for most efflux pumps, ethidium bromide. In this approach, the higher the concentration of ethidium bromide required to produce fluorescence of the bacterial mass, the greater the efflux capacity of the bacterial cells. We have tested and applied this method to a large number of Gram-positive and Gram-negative bacteria to detect efflux activity among these multi-drug resistant isolates. The presumptive efflux activity detected by the Ethidium Bromide-agar Cartwheel method was subsequently confirmed by the determination of the minimum inhibitory concentration for several antibiotics in the presence and absence of known efflux pump inhibitors.


2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


2021 ◽  
Vol 11 (09) ◽  
pp. 428-443
Author(s):  
Nsikan Samuel Udoekong ◽  
Bassey Enya Bassey ◽  
Anne Ebri Asuquo ◽  
Otobong Donald Akan ◽  
Casmir Ifeanyichukwu Cajetan Ifeanyi

2021 ◽  
Vol 12 ◽  
Author(s):  
Yasmine H. Tartor ◽  
Norhan K. Abd El-Aziz ◽  
Rasha M. A. Gharieb ◽  
Hend M. El Damaty ◽  
Shymaa Enany ◽  
...  

Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54–0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.


2013 ◽  
Vol 48 (3) ◽  
pp. 525-528 ◽  
Author(s):  
C Kilburn ◽  
DJ Rooks ◽  
AJ McCarthy ◽  
RD Murray

2019 ◽  
Vol 6 ◽  
pp. 89-95
Author(s):  
Neha Gautam ◽  
Rojan Poudel ◽  
Binod Lekhak ◽  
Milan Kumar Upreti

Objectives: This research aims to study the microbial quality of chicken meat available in retail shop of Kathmandu Valley. Methods:  This Study was conducted from June to December 2018 in three different districts of Kathmandu Valley. Samples were collected in sterile plastic bags, labeled properly and stored in an icebox and transported to the Food Microbiology laboratory of Golden Gate International College.  During sample preparation, 25 grams of each sample was taken and transferred to sterile flasks containing 225 ml of buffered peptone water. Potential pathogenic Gram-negative bacteria were isolated by using respective selective media and identified by biochemical test. Antibiotic susceptibility profile of isolates was carried out by Kirby-Bauer disc diffusion method according to CLSI 2017 guideline. Results: Of total 81 chicken meat samples processed; 201 Gram negative bacteria were isolated.  E. coli (100%) was the dominant Gram-negative isolates, followed by Citrobacter spp (62.96%), Pseudomonas spp (40.74%), Proteus spp (19.75%), Salmonella spp (16.04%) and Klebsiella spp (8.64%) respectively. No any multidrug isolates were detected. Conclusion: The study showed that the raw chicken meat samples of Kathmandu valley was highly contaminated with Gram negative potential pathogenic bacteria. Antimicrobial resistance pattern shown by the isolates may indicates that there is not overuse of drug in animals and the less chance of risk of increasing antimicrobial resistance.


2017 ◽  
Vol 60 (9) ◽  
pp. 3913-3932 ◽  
Author(s):  
Xuan Yang ◽  
Sudeep Goswami ◽  
Bala Kishan Gorityala ◽  
Ronald Domalaon ◽  
Yinfeng Lyu ◽  
...  

2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


Sign in / Sign up

Export Citation Format

Share Document