scholarly journals Comparativein vitroactivities of ceftaroline and ceftriaxone against bacterial pathogens associated with respiratory tract infections: results from the AWARE surveillance study

2016 ◽  
Vol 71 (12) ◽  
pp. 3459-3464 ◽  
Author(s):  
D. J. Biedenbach ◽  
J. P. Iaconis ◽  
D. F. Sahm
1999 ◽  
Vol 43 (2) ◽  
pp. 357-359 ◽  
Author(s):  
Fernando Baquero ◽  
José Angel García-Rodríguez ◽  
Juan García de Lomas ◽  
Lorenzo Aguilar ◽  

A nationwide susceptibility surveillance of 1,113Streptococcus pneumoniae isolates was carried out and found the following percentages of resistance: cefuroxime, 46%; penicillin, 37%; macrolides, 33%; aminopenicillins, 24%; cefotaxime, 13%; and ceftriaxone, 8%. A significant (P < 0.05) seasonality pattern for β-lactam antibiotics was observed. Resistance to macrolides was higher (P < 0.05) in middle-ear samples. Higher percentages of resistance to cefuroxime and macrolides were observed among penicillin-intermediate and -resistant strains, whereas high frequencies of resistance to aminopenicillins and expanded-spectrum cephalosporins were observed only among penicillin-resistant strains.


2019 ◽  
Vol 10 (2) ◽  
pp. 14-19 ◽  
Author(s):  
Dharm Raj Bhatta ◽  
Deependra Hamal ◽  
Rajani Shrestha ◽  
Supram HS ◽  
Pushpanjali Joshi ◽  
...  

Background: Lower respiratory tract infections are one of the most common infections among the patients in Intensive Care Units (ICUs). Admission in ICUs and use of life supporting devices increase the risk of infection with multidrug resistant pathogens. Aims and Objectives: This study was aimed to determine the prevalence and antibiograms ofthe bacterial pathogens causing lower respiratory tract infectionsamong patients of ICUs. Materials and Methods: A total of 184 specimens from patients admitted in ICUswith lower respiratory tract infections were included in this study. Isolation, identification and antibiotic susceptibility testing of the isolates was performed by standard microbiological techniques. Carbapenamase detection was performed by modified Hodge test method.Detection of metallo beta lactamase (MBL) was tested by imipenem and imipenem/EDTA disc. Detection of Klebsiellapneumoniaecarbapenamase (KPC) was performed by imipenem and imipenem/phenyl boronic acid. Results: Out of 184 samples, 131 showed significant growth of bacterial pathogens. Acinetobacter species (42.6%), Staphylococcus aureus (16.9%) and Pseudomonasaeruginosa(13.9%)were the three most common isolates. Out of 22 imipenem resistant isolates of Acientobacter species, 9 were KPC producer, 4 were MBL producers and 3 isolates were positive for MBL and KPC both. Among the Acinetobacter species, 5.1% isolates were resistant to tigecycline and colistin. One isolate of Pseudomonas aeruginosa was positive for MBL. Conclusions:High prevalence of multidrug resistant bacteria in ICUs was recorded. Gram negative bacilli were predominantly associated with LRTI among ICU patients;Acinetobacterspecies being most common isolate. Detection of carbapenamase among the Acinetobacterand emergence of tigecycline resistancelimits the therapeutic options.Regular monitoring of such resistant isolates would be important for managing infection control in critical units.


2020 ◽  
Vol 19 (3) ◽  
pp. 518-528 ◽  
Author(s):  
Roger Karlsson ◽  
Annika Thorsell ◽  
Margarita Gomila ◽  
Francisco Salvà-Serra ◽  
Hedvig E. Jakobsson ◽  
...  

Mass spectrometry (MS) and proteomics offer comprehensive characterization and identification of microorganisms and discovery of protein biomarkers that are applicable for diagnostics of infectious diseases. The use of biomarkers for diagnostics is widely applied in the clinic and the use of peptide biomarkers is increasingly being investigated for applications in the clinical laboratory. Respiratory-tract infections are a predominant cause for medical treatment, although, clinical assessments and standard clinical laboratory protocols are time-consuming and often inadequate for reliable diagnoses. Novel methods, preferably applied directly to clinical samples, excluding cultivation steps, are needed to improve diagnostics of infectious diseases, provide adequate treatment and reduce the use of antibiotics and associated development of antibiotic resistance. This study applied nano-liquid chromatography (LC) coupled with tandem MS, with a bioinformatics pipeline and an in-house database of curated high-quality reference genome sequences to identify species-unique peptides as potential biomarkers for four bacterial pathogens commonly found in respiratory tract infections (RTIs): Staphylococcus aureus; Moraxella catarrhalis; Haemophilus influenzae and Streptococcus pneumoniae. The species-unique peptides were initially identified in pure cultures of bacterial reference strains, reflecting the genomic variation in the four species and, furthermore, in clinical respiratory tract samples, without prior cultivation, elucidating proteins expressed in clinical conditions of infection. For each of the four bacterial pathogens, the peptide biomarker candidates most predominantly found in clinical samples, are presented. Data are available via ProteomeXchange with identifier PXD014522. As proof-of-principle, the most promising species-unique peptides were applied in targeted tandem MS-analyses of clinical samples and their relevance for identifications of the pathogens, i.e. proteotyping, was validated, thus demonstrating their potential as peptide biomarker candidates for diagnostics of infectious diseases.


Author(s):  
Ahmed Atia ◽  
Najla Elyounsi ◽  
Ahmed Abired ◽  
Amal Wanis ◽  
Abdulsalam Ashour

1) Background: Respiratory tract infections (RTI) has been known to be a significant health concern for mortality and morbidity since many years. This study was aimed at determining the prevalence of bacterial pathogen causing upper respiratory tract (URTIs) and the susceptibility patterns to frequently used antibiotics among patients attending Abusetta hospital in Tripoli district; 2) Methods: A total of 1,110 throat swabs were collected between Jan, 2011 to December, 2014 and inoculated onto Blood agar, MacCkonkey agar and Chocolate agar then incubated at 37 oC for 24 hours. Bacterial pathogens were determined by bacteriological culture methods and antibiotic susceptibility of the isolates was identified following Clinical Laboratory Standard Institute guidelines (CLSI); 3) Results: Of the 1,110 respiratory samples tested, 71.1% (n = 789) of specimens were positive cultures with the dominant bacterial pathogens being streptococcus pneumonia 43.3% (n = 342), followed by pseudomonas aeruginosa 22.8% (n = 180), staphylococcus aurous 13.8% (n = 109), Escherichia Coli 6.9% (n = 55), Enterobacter spp 6.2% (n = 49), Citrobacter 4.5% (n = 36), and Klebsiella 2.2% (n = 18). Most isolates exhibited resistance against the commonly used antibiotics and to at least one antibiotic; and 4) Conclusions: The level of antibiotic resistance in this study is alarming and brings to light the timely and suitable diagnosis of the common bacteria causes of URTIs and proper antibiotic administration based on susceptibility test.


2017 ◽  
Vol 4 (5) ◽  
pp. 1733
Author(s):  
Venkata Krishna Munagala ◽  
Ramisetty M. Uma Mahesh ◽  
Jithendra Kandati ◽  
Munilakshmi Ponugoti

Background: WHO estimated burden of respiratory tract infections in 2010, estimates four and half million deaths due to respiratory tract infections among children every year. In India, 1.2 million deaths have been reported among children due to RTI among 5.9 million deaths globally. Lower respiratory tract infections are most common causes of death than upper respiratory tract infections. Pneumonia and Bronchiolitis are most common types of LRTI in children. Pneumonia accounts for most of the deaths in children < 5 years of age. The present study was undertaken with an objective to know the various types of lower respiratory tract infections in children less than 12 years of age. The study also aims to know the various bacterial agents causing respiratory tract infections with their antibiotic susceptibility.Methods: Hospital based, prospective cross-sectional study was conducted for a period of one year and 375 children were enrolled. Demographic, clinical history and examination was done and signs and symptoms noted. All necessary investigations were performed and followed regularly for management and outcome.Results: Incidence of LRTI in the study was 9.76% with male preponderance (65.33%) and most common among children in 1-4 years age group. Ratio of males to females was 1.9:1. 73.6% of cases were in low socio-economic group, 35.2% were found with PEM-I grade and 18.13% had no immunization coverage. Cough and breathlessness were the major symptoms and respiratory distress and clubbing were major signs in the study. Bronchopneumonia was the commonest cause (38.7%) followed by bronchiolitis and Allergic bronchitis. 18.45 of cases had anemia and Leucocytosis was also present. Pulmonary infiltration was the major finding in the X-ray of chest. Streptococcus pneumoniae and Klebsiella pneumoniae were the common bacterial pathogens isolated.Conclusions: To conclude, our study clearly highlighted the various types of clinical presentations, risk factors and different types of LRTI in children <12 years of age. Understanding a clear knowledge of the etiology and bacterial pathogens clearly provides guidance for the physician in management and clinical outcome. 


Sign in / Sign up

Export Citation Format

Share Document