scholarly journals Genomic islands 1 and 2 carry multiple antibiotic resistance genes in Pseudomonas aeruginosa ST235, ST253, ST111 and ST175 and are globally dispersed

2016 ◽  
Vol 72 (2) ◽  
pp. 620-622 ◽  
Author(s):  
Piklu Roy Chowdhury ◽  
Martin J. Scott ◽  
Steven P. Djordjevic
2018 ◽  
Vol 4 (12) ◽  
pp. 2051-2057 ◽  
Author(s):  
Fuzheng Zhao ◽  
Qing Hu ◽  
Hongqiang Ren ◽  
Xu-Xiang Zhang

UV irradiation disturbs the regulatory system of efflux pump proteins to sensitize P. aeruginosa to multiple antibiotics. The increasing susceptibility to rifampicin and vancomycin might be caused by UV-mediated mutations in antibiotic resistance genes.


2019 ◽  
Vol 201 (10) ◽  
Author(s):  
Malika Humbert ◽  
Kévin T. Huguet ◽  
Frédéric Coulombe ◽  
Vincent Burrus

ABSTRACTConjugative plasmids of incompatibility group C (IncC), formerly known as A/C2, disseminate antibiotic resistance genes globally in diverse pathogenic species ofGammaproteobacteria. Salmonellagenomic island 1 (SGI1) can be mobilized by IncC plasmids and was recently shown to reshape the conjugative type IV secretion system (T4SS) encoded by these plasmids to evade entry exclusion. Entry exclusion blocks DNA translocation between cells containing identical or highly similar plasmids. Here, we report that the protein encoded by the entry exclusion gene of IncC plasmids (eexC) mediates entry exclusion in recipient cells through recognition of the IncC-encoded TraGCprotein in donor cells. Phylogenetic analyses based on EexC and TraGChomologs predicted the existence of at least three different exclusion groups among IncC-related conjugative plasmids. Mating assays using Eex proteins encoded by representative IncC and IncA (former A/C1) and related untyped plasmids confirmed these predictions and showed that the IncC and IncA plasmids belong to the C exclusion group, thereby explaining their apparent incompatibility despite their compatible replicons. Representatives of the two other exclusion groups (D and E) are untyped conjugative plasmids found inAeromonassp. Finally, we determined through domain swapping that the carboxyl terminus of the EexC and EexE proteins controls the specificity of these exclusion groups. Together, these results unravel the role of entry exclusion in the apparent incompatibility between IncA and IncC plasmids while shedding light on the importance of the TraG subunit substitution used by SGI1 to evade entry exclusion.IMPORTANCEIncA and IncC conjugative plasmids drive antibiotic resistance dissemination among several pathogenic species ofGammaproteobacteriadue to the diversity of drug resistance genes that they carry and their ability to mobilize antibiotic resistance-conferring genomic islands such as SGI1 ofSalmonella enterica. While historically grouped as “IncA/C,” IncA and IncC replicons were recently confirmed to be compatible and to abolish each other’s entry into the cell in which they reside during conjugative transfer. The significance of our study is in identifying an entry exclusion system that is shared by IncA and IncC plasmids. It impedes DNA transfer to recipient cells bearing a plasmid of either incompatibility group. The entry exclusion protein of this system is unrelated to any other known entry exclusion proteins.


2004 ◽  
Vol 186 (17) ◽  
pp. 5945-5949 ◽  
Author(s):  
John W. Beaber ◽  
Matthew K. Waldor

ABSTRACT Transfer of SXT, a Vibrio cholerae-derived integrating conjugative element that encodes multiple antibiotic resistance genes, is repressed by SetR, a λ434 cI-related repressor. Here we identify divergent promoters between s086 and setR that drive expression of the regulators of SXT transfer. One transcript encodes the activators of transfer, setC and setD. The second transcript codes for SetR and, like the cI transcript of lambda, is leaderless. SetR binds to four operators located between setR and s086; the locations and relative affinities of these sites suggest a model for regulation of SXT transfer.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
M. B. Couger ◽  
Anna Wright ◽  
Erika I. Lutter ◽  
Noha Youssef

We report here the draft genome sequences of five Pseudomonas aeruginosa isolates obtained from sputum samples from two cystic fibrosis patients with chronic colonization. These closely related strains harbor 225 to 493 genes absent from the P. aeruginosa POA1 genome and contain 178 to 179 virulence factors and 29 to 31 antibiotic resistance genes.


2018 ◽  
Author(s):  
Prasanth Manohar ◽  
Thamaraiselvan Shanthini ◽  
Reethu Ann Philip ◽  
Subramani Ramkumar ◽  
Manali Kale ◽  
...  

AbstractTo evaluate the presence of biofilm-specific antibiotic-resistant genes, PA0756-0757, PA5033 and PA2070 in Pseudomonas aeruginosa isolated from clinical samples in Tamil Nadu. For this cross-sectional study, 24 clinical isolates (included pus, urine, wound, and blood) were collected from two diagnostic centers in Chennai from May 2015 to February 2016. Biofilm formation was assessed using microtiter dish biofilm formation assay and minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) were determined for planktonic and biofilm cells (MBC assay). Further, PCR amplification of biofilm-specific antibiotic resistance genes PA0756-0757, PA5033 and PA2070 were performed. Biofilm formation was found to be moderate/strong in 16 strains. MBC for planktonic cells showed that 4, 7, 10 and 14 strains were susceptible to gentamicin, ciprofloxacin, meropenem and colistin respectively. In MBC assay for biofilm cells (MBC-B), all the 16 biofilm producing strains were resistant to ciprofloxacin and gentamicin whereas nine and four were resistant to meropenem, and colistin respectively. The biofilm-specific antibiotic-resistant genes PA0756-0757 was found in 10 strains, 6 strains with PA5033 and 9 strains with PA2070 that were found to be resistant phenotypically. This study highlighted the importance of biofilm-specific antibiotic resistance genes PA0756-0757, PA5033, and PA2070 in biofilm-forming P. aeruginosa.


2021 ◽  
Vol 10 (1) ◽  
pp. 40-48
Author(s):  
O.C. Adekunle ◽  
A. Mustapha ◽  
G. Odewale ◽  
R.O. Ojedele

Introduction: Pseudomonas aeruginosa (P. aeruginosa) is a frequent nosocomial pathogen that causes severe diseases in many clinical and community settings. The objectives were to investigate the occurrence of multiple antibiotic resistant P. aeruginosa strains among clinical samples and to detect the presence of antibiotic resistance genes in the DNA molecules of the strains.Methods: Clinical specimens were collected aseptically from various human anatomical sites in five selected health institutions within Kwara State, Nigeria. Multiple drug resistance patterns of isolated micro-organisms to different antibiotics were determined using the Bauer Kirby disc diffusion technique. The DNA samples of the multiple resistant P. aeruginosa strains were extracted and subjected to Polymerase Chain Reaction (PCR) for resistance gene determination.Results: A total of 145 isolates were identified as P. aeruginosa from the clinical samples. Absolute resistance to ceftazidime, gentamicin and ceftriaxone was observed while low resistance to ciprofloxacin, piperacillin and imipenem was documented. The prevalence of bla VIM , ,bla CTX-M and blaTEM were 34.4 %, 46.7 % and 16.7 % respectively.Conclusion: This study has shown that there is a high occurrence of metallo â-lactamase- producing and antibiotic-resistant strains of P. aeruginosa in clinical specimens from the studied area. Keywords: Metallo â-lactamase enzyme, P. aeruginosa, clinical samples, antibiotic-resistance genes


2020 ◽  
Vol 24 (4) ◽  
pp. 633-637
Author(s):  
B.O. Isichei-Ukah ◽  
O.I. Enabulele

The presence of integrons and antibiotic resistance genes in the genome of Pseudomonas aeruginosa pose a serious problem in the treatment and control of infections caused by this pathogen in hospitals. This study was carried to analyse the presence of class 1 integrons and some antibiotic resistance genes on selected clinical and environmental strains of Pseudomonas aeruginosa. A total of 120 strains were employed for this study.The strains were confirmed using molecular method and species-specific primers targeting the 16S ribosomal ribonucleic acid (rRNA). Polymerase chain reaction (PCR) was used to detect the presence of class 1 integrons and resistance genes using appropriate primers and conditions. The strains were analysed for the presence of the following antibiotic resistance genes - aadA, blaPSE, blaAMPC, blaIMP and tetC encoding  aminoglycosides, betalactamases, metallo-beta-lactamases (MBL) and tetracylines resistance respectively. On screening the isolates for the presence of class 1 integrons, 50/60 (83.3 %) clinical isolates and 46/60 (76.7 %) environmental isolates showed positive results (P > 0.05). In both clinical and environmental isolates, the highest occurring resistance genes were blaAMPC and tetC (encoding beta-lactamases and tetracylines respectively), while the least was observed in blaIMP (encoding metallo-beta-lactamases). In comparison, there was high significance difference (at P<0.01 significance level) in the resistance gene blaPSE between the clinical and environmental strains. The high prevalence of these resistance genes is a great threat in the treatment of Pseudomonas infections. Keywords: Pseudomonas aeruginosa, Resistance genes, Integrons, Beta-lactamases.


2021 ◽  
Vol 9 (5) ◽  
pp. 908
Author(s):  
Xuemei Liu ◽  
Weiling Guo ◽  
Shumao Cui ◽  
Xin Tang ◽  
Jianxin Zhao ◽  
...  

In recent years, Blautia has attracted attention for its role in ameliorating host diseases. In particular, Blautia producta DSM 2950 has been considered a potential probiotic due to its ability to mitigate inflammation in poly(I:C) induced HT-29 cells. Thus, to promote the development of indigenous intestinal microorganisms with potential probiotic function, we conducted a comprehensive experimental analysis of DSM 2950 to determine its safety. This comprised a study of its potential virulence genes, antibiotic resistance genes, genomic islands, antibiotic resistance, and hemolytic activity and a 14-day test of its acute oral toxicity in mice. The results indicated no toxin-related virulence genes in the DSM 2950 genome. Most of the genomic islands in DSM 2950 were related to metabolism, rather than virulence expression. DSM 2950 was sensitive to most of the tested antibiotics but was tolerant of treatment with kanamycin, neomycin, clindamycin, or ciprofloxacin, probably because it possessed the corresponding antibiotic resistance genes. Oral acute toxicity tests indicated that the consumption of DSM 2950 does not cause toxic side effects in mice. Overall, the safety profile of DSM 2950 confirmed that it could be a candidate probiotic for use in food and pharmaceutical preparations.


2007 ◽  
Vol 51 (5) ◽  
pp. 1827-1829 ◽  
Author(s):  
H. W. Stokes ◽  
Liam D. H. Elbourne ◽  
Ruth M. Hall

ABSTRACT Transposon Tn1403 from a clinical Pseudomonas strain is composed of three transposons, including Tn5393c. A related transposon Tn1404* from a plant-associated Pseudomonas strain lacks Tn5393 but includes a transposon carrying the tet(C) tetracycline resistance determinant. These compound transposons illustrate the role of preexisting transposons in generating clusters of antibiotic resistance genes.


Sign in / Sign up

Export Citation Format

Share Document