scholarly journals Unravelling ceftazidime/avibactam resistance of KPC-28, a KPC-2 variant lacking carbapenemase activity

2019 ◽  
Vol 74 (8) ◽  
pp. 2239-2246 ◽  
Author(s):  
Saoussen Oueslati ◽  
Bogdan I Iorga ◽  
Linda Tlili ◽  
Cynthia Exilie ◽  
Agustin Zavala ◽  
...  

Abstract Background KPC-like carbapenemases have spread worldwide with more than 30 variants identified that differ by single or double amino-acid substitutions. Objectives To describe the steady-state kinetic parameters of KPC-28, which differs from KPC-2 by a H274Y substitution and the deletion of two amino acids (Δ242-GT-243). Methods The blaKPC-2, blaKPC-3, blaKPC-14 and blaKPC-28 genes were cloned into a pTOPO vector for susceptibility testing or into pET41b for overexpression, purification and subsequent kinetic parameter (Km, kcat) determination. Molecular docking experiments were performed to explore the role of the amino-acid changes in the carbapenemase activity. Results Susceptibility testing revealed that Escherichia coli producing KPC-28 displayed MICs that were lower for carbapenems and higher for ceftazidime and ceftazidime/avibactam as compared with KPC-2. The catalytic efficiencies of KPC-28 and KPC-14 for imipenem were 700-fold and 200-fold lower, respectively, than those of KPC-2, suggesting that Δ242-GT-243 in KPC-28 and KPC-14 is responsible for reduced carbapenem hydrolysis. Similarly, the H274Y substitution resulted in KPC-28 in a 50-fold increase in ceftazidime hydrolysis that was strongly reversed by clavulanate. Conclusions We have shown that KPC-28 lacks carbapenemase activity, has increased ceftazidime hydrolytic activity and is strongly inhibited by clavulanate. KPC-28-producing E. coli isolates display an avibactam-resistant ESBL profile, which may be wrongly identified by molecular and immunochromatographic assays as the presence of a carbapenemase. Accordingly, confirmation of carbapenem hydrolysis will be mandatory with assays based solely on blaKPC gene or gene product detection.

2005 ◽  
Vol 51 (6) ◽  
pp. 497-500 ◽  
Author(s):  
Ayush Kumar ◽  
Elizabeth A Worobec

A tolC-like gene (hasF) was identified upon scanning the incomplete database of the S. marcescens genome. This gene was amplified using PCR and cloned in the pUC18 vector to yield pUCHF. Sequencing of the S. marcescens tolC-like hasF gene and subsequent amino acid sequence prediction revealed approximately 80% amino acid homology with the Escherichia coli TolC. A tolC-deficient strain of E. coli (BL923) containing pUCHF/hasF was analyzed for susceptibility to fluoroquinolones (ciprofloxacin, norfloxacin, and ofloxacin), chloramphenicol, sodium dodecyl sulfate (SDS), and ethidium bromide. Antibiotic susceptibility assays of the E. coli tolC-deficient mutant BL923 demonstrated a 64-fold increase in resistance to SDS and ethidium bromide upon introduction of the S. marcescens tolC-like hasF gene. No change was observed for susceptibility to fluoroquinolones and chloramphenicol. Ethidium bromide accumulation assays performed using E. coli BL923:pUCHF established the role of the S. marcescens hasF gene product in proton gradient-dependent efflux.Key words: HasF, TolC, efflux, S. marcescens.


2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


2020 ◽  
Vol 75 (9) ◽  
pp. 2554-2563 ◽  
Author(s):  
Christopher Fröhlich ◽  
Vidar Sørum ◽  
Sandra Huber ◽  
Ørjan Samuelsen ◽  
Fanny Berglund ◽  
...  

Abstract Background MBLs form a large and heterogeneous group of bacterial enzymes conferring resistance to β-lactam antibiotics, including carbapenems. A large environmental reservoir of MBLs has been identified, which can act as a source for transfer into human pathogens. Therefore, structural investigation of environmental and clinically rare MBLs can give new insights into structure–activity relationships to explore the role of catalytic and second shell residues, which are under selective pressure. Objectives To investigate the structure and activity of the environmental subclass B1 MBLs MYO-1, SHD-1 and ECV-1. Methods The respective genes of these MBLs were cloned into vectors and expressed in Escherichia coli. Purified enzymes were characterized with respect to their catalytic efficiency (kcat/Km). The enzymatic activities and MICs were determined for a panel of different β-lactams, including penicillins, cephalosporins and carbapenems. Thermostability was measured and structures were solved using X-ray crystallography (MYO-1 and ECV-1) or generated by homology modelling (SHD-1). Results Expression of the environmental MBLs in E. coli resulted in the characteristic MBL profile, not affecting aztreonam susceptibility and decreasing susceptibility to carbapenems, cephalosporins and penicillins. The purified enzymes showed variable catalytic activity in the order of <5% to ∼70% compared with the clinically widespread NDM-1. The thermostability of ECV-1 and SHD-1 was up to 8°C higher than that of MYO-1 and NDM-1. Using solved structures and molecular modelling, we identified differences in their second shell composition, possibly responsible for their relatively low hydrolytic activity. Conclusions These results show the importance of environmental species acting as reservoirs for MBL-encoding genes.


Author(s):  
Cecile Emeraud ◽  
Laura Biez ◽  
Delphine Girlich ◽  
Agnès B Jousset ◽  
Thierry Naas ◽  
...  

Abstract Background OXA-244, a single amino acid variant of OXA-48, demonstrates weaker hydrolytic activity towards carbapenems and temocillin compared with OXA-48. Of note, these antimicrobials are present in high concentrations in several carbapenemase-producing Enterobacterales (CPE) screening media. As a result, some screening media fail to grow OXA-244-producing isolates, while the prevalence of OXA-244 producers is constantly increasing in France. Methods Here, we evaluate the performance of three commercially available CPE screening media [ChromID® CARBA SMART (bioMérieux), Brilliance™ CRE (Thermo Fisher) and mSuperCARBA™ (MAST Diagnostic)] for their ability to detect OXA-244 producers (n = 101). As OXA-244 producers may also express an ESBL, two additional ESBL screening media were tested (Brilliance™ ESBL and ChromID® BLSE). MICs of temocillin and imipenem were determined by broth microdilution. The clonality of OXA-244-producing Escherichia coli isolates (n = 97) was assessed by MLST. Results Overall, the sensitivity of the ChromID® CARBA SMART, Brilliance™ CRE and mSuperCARBA™ media were 14% (95% CI = 8.1%–22.5%), 54% (95% CI = 43.3%–63.4%) and 99% (95% CI = 93.8%–100%), respectively, for the detection of OXA-244 producers. Among the 101 OXA-244-producing isolates, 96% were E. coli and 77%–78% grew on ESBL screening media. MLST analysis identified five main STs among OXA-244-producing E. coli isolates: ST38 (n = 37), ST361 (n = 17), ST69 (n = 12), ST167 (n = 11) and ST10 (n = 8). Conclusions Our results demonstrated that the mSuperCARBA™ medium is very efficient in the detection of OXA-244 producers, unlike the ChromID® CARBA SMART medium. The high prevalence of ESBLs among OXA-244 producers allowed detection of 77%–78% of them using ESBL-specific screening media.


2004 ◽  
Vol 70 (6) ◽  
pp. 3298-3304 ◽  
Author(s):  
Khim Leang ◽  
Goro Takada ◽  
Akihiro Ishimura ◽  
Masashi Okita ◽  
Ken Izumori

ABSTRACT The gene encoding l-rhamnose isomerase (l-RhI) from Pseudomonas stutzeri was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the l-RhI gene revealed an open reading frame of 1,290 bp coding for a protein of 430 amino acid residues with a predicted molecular mass of 46,946 Da. A comparison of the deduced amino acid sequence with sequences in relevant databases indicated that no significant homology has previously been identified. An amino acid sequence alignment, however, suggested that the residues involved in the active site of l-RhI from E. coli are conserved in that from P. stutzeri. The l-RhI gene was then overexpressed in E. coli cells under the control of the T5 promoter. The recombinant clone, E. coli JM109, produced significant levels of l-RhI activity, with a specific activity of 140 U/mg and a volumetric yield of 20,000 U of soluble enzyme per liter of medium. This reflected a 20-fold increase in the volumetric yield compared to the value for the intrinsic yield. The recombinant l-RhI protein was purified to apparent homogeneity on the basis of three-step chromatography. The purified recombinant enzyme showed a single band with an estimated molecular weight of 42,000 in a sodium dodecyl sulfate-polyacrylamide gel. The overall enzymatic properties of the purified recombinant l-RhI protein were the same as those of the authentic one, as the optimal activity was measured at 60�C within a broad pH range from 5.0 to 11.0, with an optimum at pH 9.0.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Duong Thi Hong Diep ◽  
Nguyen Thi Thanh Phuong ◽  
Mya Myintzu Hlaing ◽  
Potjanee Srimanote ◽  
Sumalee Tungpradabkul

Burkholderia pseudomallei is the causative agent of melioidosis. The complete genome sequences of this pathogen have been revealed, which explain some pathogenic mechanisms. In various hostile conditions, for example, during nitrogen and amino acid starvation, bacteria can utilize alternative sigma factors such as RpoS and RpoN to modulate genes expression for their adaptation and survival. In this study, we demonstrate that mutagenesis of rpoN2, which lies on chromosome 2 of B. pseudomallei and encodes a homologue of the sigma factor RpoN, did not alter nitrogen and amino acid utilization of the bacterium. However, introduction of B. pseudomallei rpoN2 into E. coli strain deficient for rpoN restored the ability to utilize amino acids. Moreover, comparative partial proteomic analysis of the B. pseudomallei wild type and its rpoN2 isogenic mutant was performed to elucidate its amino acids utilization property which was comparable to its function found in the complementation assay. By contrast, the rpoN2 mutant exhibited decreased katE expression at the transcriptional and translational levels. Our finding indicates that B. pseudomallei RpoN2 is involved in a specific function in the regulation of catalase E expression.


1993 ◽  
Vol 290 (3) ◽  
pp. 833-842 ◽  
Author(s):  
J A R Muiry ◽  
T C Gunn ◽  
T P McDonald ◽  
S A Bradley ◽  
C G Tate ◽  
...  

1. An alkaline pH change occurred when L-rhamnose, L-mannose or L-lyxose was added to L-rhamnose-grown energy-depleted suspensions of strains of Escherichia coli. This is diagnostic of sugar-H+ symport activity. 2. L-Rhamnose, L-mannose and L-lyxose were inducers of the sugar-H+ symport and of L-[14C]rhamnose transport activity. L-Rhamnose also induced the biochemically and genetically distinct L-fucose-H+ symport activity in strains competent for L-rhamnose metabolism. 3. Steady-state kinetic measurements showed that L-mannose and L-lyxose were competitive inhibitors (alternative substrates) for the L-rhamnose transport system, and that L-galactose and D-arabinose were competitive inhibitors (alternative substrates) for the L-fucose transport system. Additional measurements with other sugars of related structure defined the different substrate specificities of the two transport systems. 4. The relative rates of H+ symport and of sugar metabolism, and the relative values of their kinetic parameters, suggested that the physiological role of the transport activity was primarily for utilization of L-rhamnose, not for L-mannose or L-lyxose. 5. L-Rhamnose transport into subcellular vesicles of E. coli was dependent on respiration, was optimal at pH 7, and was inhibited by protonophores and ionophores. It was insensitive to N-ethylmaleimide or cytochalasin B. 6. L-Rhamnose, L-mannose and L-lyxose each elicited an alkaline pH change when added to energy-depleted suspensions of L-rhamnose-grown Salmonella typhimurium LT2, Klebsiella pneumoniae, Klebsiella aerogenes, Erwinia carotovora carotovora and Erwinia carotovora atroseptica. The relative rates of subsequent acidification varied, depending on both the organism and the sugar. L-Fucose promoted an alkaline pH change in all the L-rhamnose-induced organisms except the Erwinia species. No L-rhamnose-H+ symport occurred in any organism grown on L-fucose. 7. All these results showed that L-rhamnose transport into the micro-organisms occurred by a system different from that for L-fucose transport. Both systems are energized by the trans-membrane electrochemical gradient of protons. 8. Neither steady-state kinetic measurements nor binding-protein assays revealed the existence of a second L-rhamnose transport system in E. coli.


2002 ◽  
Vol 184 (1) ◽  
pp. 327-330 ◽  
Author(s):  
Erh-Min Lai ◽  
Ralf Eisenbrandt ◽  
Markus Kalkum ◽  
Erich Lanka ◽  
Clarence I. Kado

ABSTRACT VirB2 propilin is processed by the removal of a 47-amino-acid signal peptide to generate a 74-amino-acid peptide product in both Escherichia coli and Agrobacterium tumefaciens. The cleaved VirB2 protein is further cyclized to form the T pilin in A. tumefaciens but not in E. coli. Mutations in the signal peptidase cleavage sequence of VirB2 propilin cause the formation of aberrant T pilin and also severely attenuate virulence. No T pilus was observed in these mutants. The potential role of the exact VirB2 propilin cleavage and cyclization in T pilus biogenesis and virulence is discussed.


Sign in / Sign up

Export Citation Format

Share Document