scholarly journals Validation of UV Spectrophotometric and Nonaqueous Titration Methods for the Determination of Carvedilol in Pharmaceutical Formulations

2005 ◽  
Vol 88 (5) ◽  
pp. 1299-1303 ◽  
Author(s):  
Carine Viana Silva Ieggli ◽  
Simone Gonçalves Cardoso ◽  
Luziane Potrich Belle

Abstract Ultraviolet (UV) spectrophotometric and nonaqueous volumetric methods are described for the determination of carvedilol in pharmaceutical formulations. Linearity, precision, and accuracy were evaluated according to the validation guidelines of the International Conference on Harmonizationand the United States Pharmacopeia for both methods. The UV spectrophotometric procedure was performed in ethanol at 244 nm. Good linearity was obtained between 2 and 7 μg/mL with a correlation coefficient of 0.9999. The intra- and interday precision values were <2% for all samples analyzed. The accuracy, determined from recovery studies, was between 97.5 and 102.2%. The other procedure was based on the volumetric quantitation of carvedilol in a nonaqueous medium with 0.01M perchloric acid and 1% violet crystal as the indicator. The validation of the volumetric method yielded good results that included linearity (r of >0.999), precision (relative standard deviations of <2% for intra- and interday precision), and accuracy (96.4–102.4%). The methods were applied to tablets and compounded capsules. Statistical analysis by analysis of variance showed no significant difference between the results obtained by the proposed methods.

2021 ◽  
pp. 77-85

Simultaneous spectrophotometric determination of captopril and hydro-chlorothiazide in pharmaceutical formulations by the H-point standard addition method (HPSAM) is described. Absorbance at 211.5 and 230.3 nm was monitored upon the addition of standard solutions of captopril. The results showed that in prepared mixtures, captopril and hydrochlorothiazide can be determined simultaneously at concentration ratios varying from 1.0:0.8 to 2.5:1.5 μg/mL, respectively. Percentage recovery was found to be 95.33–104.37% for captopril and 96.8–105% for hydrochlorothiazide, with a relative standard deviation (RSD) of 2.46%. The method was successfully used to evaluate the antihypertensive captopril drug in a binary combination of hydrochlorothiazide in real samples with high precision and accuracy within the recovery percentage.


2006 ◽  
Vol 89 (2) ◽  
pp. 359-364 ◽  
Author(s):  
Marcelo Donadel Malesuik ◽  
Simone Gonalves Cardoso ◽  
Lisiane Bajerski ◽  
Fibele Analine Lanzanova

Abstract A liquid chromatography (LC) method and an ultraviolet (UV) spectrophotometricmethod were developed and validated for quantitative determination of amlodipine in tablets and compounded capsules. The isocratic LC analyses were performed on an RP18 column using a mobile phase composed of 0.1 (v/v) ortho-phosphoric acid (pH 3.0) acetonitrile (60 40, v/v) at a flow rate of 1.0 mL/min. The UV spectrophotometricmethodwas performed at 238 nm. The analytical methodswere validated according to International Conference on Harmonization Guidelines. The calibration graphswere linear correlation coefficient (r) > 0.999 in the studied concentration range of 1030 g/mL for LC and 1035 g/mL for UV spectrophotometry. The relative standard deviation values for intraday and interday precision studies were less than 2, and the accuracywas greater than 98 for bothmethods. The specificity of the LC method was proved using forced degradation. Statistical analyses showed no significant difference between the results obtained by the 2 methods. The proposed methods are precise and accurate and can be applied directly and easily to the oral pharmaceutical preparations of amlodipine.


2015 ◽  
Vol 51 (4) ◽  
pp. 833-837 ◽  
Author(s):  
Letícia Lenz Sfair ◽  
Jeferson Scarpari Graeff ◽  
Martin Steppe ◽  
Elfrides Eva Scherman Schapoval

abstract Ultraviolet spectrophotometric (UV) and Liquid Chromatographic (LC) methods for the determination of mianserin hydrochloride in pharmaceutical formulation were developed and validated. The various parameters, such as specificity, linearity, precision and accuracy were studied according to International Conference on Harmonization (ICH, 2005). For UV method, mianserin hydrochloride was determinate at 278 nm using HCl 0.1 M as the solvent. The response was linear in the concentration range of 20.0 - 140.0 µg/mL (r = 0.9998). Precision data evaluated by relative standard deviation was lower than 2%. The UV method was simple, rapid and low cost. Chromatographic analyses were performed in an Ace C18 column and the mobile phase was composed of methanol, 50 mM monobasic potassium phosphate buffer and 0.3% triethylamine solution adjusted to pH 7.0 with phosphoric acid 10% (85:15). LC method was specific, linear, precise, exact and robust. The results confirmed that the both methods are valid and useful to the routine quality control of mianserin hydrochloride in coated tablets. Statistical analysis by Student´s t-test showed no significant difference between the results obtained by UV and LC methods.


2012 ◽  
Vol 10 (6) ◽  
pp. 1842-1849 ◽  
Author(s):  
Pamela Oliveira Rossini ◽  
Fabiana Felix ◽  
Lúcio Angnes

AbstractLosartan is an antihypertensive agent that lost its patent protection in 2010, and, consequently, it has been available in generic form. The latter motivated the search for a rapid and precise alternative method. Here, a simple conductometric titration in aqueous medium is described for the losartan analysis in pharmaceutical formulations. The first step of the titration occurs with the protonation of losartan producing a white precipitate and resulting in a slow increase in conductivity. When the protonation stage is complete, a sharp increase in conductivity occurs which was determined to be due to the presence of excess of acid. The titrimetric method was applied to the determination of losartan in pharmaceutical products and the results are comparable with values obtained using a chromatographic method recommended by the United States Pharmacopoeia. The relative standard deviation for successive measurements of a 125 mg L−1 (2.71×10−4 mol L−1) losartan solution was approximately 2%. Recovery study in tablet samples ranged between 99 and 102.4%. The procedure is fast, simple, and represents an attractive alternative for losartan quantification in routine analysis. In addition, it avoids organic solvents, minimizes the risk of exposure to the operator, and the waste treatment is easier compared to classical chromatographic methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Patrícia Vidal de Aléssio ◽  
Ana Carolina Kogawa ◽  
Hérida Regina Nunes Salgado

Ceftriaxone sodium, an antimicrobial agent that plays an important role in clinical practice, is successfully used to treat infections caused by most Gram-positive and Gram-negative organisms. Since there are few rapid analytical methods for ceftriaxone analysis to use in the pharmaceutical routine, the aim of this research was to develop a new method able to quantify this cephalosporin. Therefore, a sensitive, rapid, simple UV spectrophotometric method for the determination and quantification of ceftriaxone sodium was proposed. The UV detector was set at 241 nm. Beer’s law obeyed the concentration range of 10–20 µg mL−1. Statistical comparison of the results with a well-established reported method showed excellent agreement and proved that there is no significant difference in the accuracy and precision. Intra- and interday variability for the method were less than 2% relative standard deviation. The proposed method was applied to the determination of the examined drugs in pharmaceutical formulations and the results demonstrated that the method is equally accurate, precise, and reproducible as the official methods.


Author(s):  
K. Srinivasa Rao ◽  
Keshar N K ◽  
N Jena ◽  
M.E.B Rao ◽  
A K Patnaik

A stability-indicating LC assay method was developed for the quantitative determination of fenofibrate (FFB) in pharmaceutical dosage form in the presence of its degradation products and kinetic determinations were evaluated in acidic, alkaline and peroxide degradation conditions. Chromatographic separation was achieved by use of Zorbax C18 column (250 × 4.0 mm, 5 μm). The mobile phase was established by mixing phosphate buffer (pH adjusted 3 with phosphoric acid) and acetonitrile (30:70 v/v). FFB degraded in acidic, alkaline and hydrogen peroxide conditions, while it was more stable in thermal and photolytic conditions. The described method was linear over a range of 1.0-500 μg/ml for determination of FFB (r= 0.9999). The precision was demonstrated by relative standard deviation (RSD) of intra-day (RSD= 0.56– 0.91) and inter-day studies (RSD= 1.47). The mean recovery was found to be 100.01%. The acid and alkaline degradations of FFB in 1M HCl and 1M NaOH solutions showed an apparent zero-order kinetics with rate constants 0.0736 and 0.0698  min−1 respectively and the peroxide degradation with 5% H2O2 demonstrated an apparent first-order kinetics with rate constant k = 0.0202 per min. The t1/2, t90   values are also determined for all the kinetic studies. The developed method was found to be simple, specific, robust, linear, precise, and accurate for the determination of FFB in pharmaceutical formulations.  


Author(s):  
Nesma M Fahmy ◽  
Adel M Michael

Abstract Background Modern built-in spectrophotometer software supporting mathematical processes provided a solution for increasing selectivity for multicomponent mixtures. Objective Simultaneous spectrophotometric determination of the three naturally occurring antioxidants—rutin(RUT), hesperidin(HES), and ascorbic acid(ASC)—in bulk forms and combined pharmaceutical formulation. Method This was achieved by factorized zero order method (FZM), factorized derivative method (FD1M), and factorized derivative ratio method (FDRM), coupled with spectrum subtraction(SS). Results Mathematical filtration techniques allowed each component to be obtained separately in either its zero, first, or derivative ratio form, allowing the resolution of spectra typical to the pure components present in Vitamin C Forte® tablets. The proposed methods were applied over a concentration range of 2–50, 2–30, and 10–100 µg/mL for RUT, HES, and ASC, respectively. Conclusions Recent methods for the analysis of binary mixtures, FZM and FD1M, were successfully applied for the analysis of ternary mixtures and compared to the novel FDRM. All were revealed to be specific and sensitive with successful application on pharmaceutical formulations. Validation parameters were evaluated in accordance with the International Conference on Harmonization guidelines. Statistical results were satisfactory, revealing no significant difference regarding accuracy and precision. Highlights Factorized methods enabled the resolution of spectra identical to those of pure drugs present in mixtures. Overlapped spectra of ternary mixtures could be resolved by spectrum subtraction coupled FDRM (SS-FDRM) or by successive application of FZM and FD1M.


Author(s):  
Mouhammed Khateeb ◽  
Basheer Elias ◽  
Fatema Al Rahal

A simple and sensitive kinetic spectrophotometric method has been developed for the determination of folic acid (FA) in bulk and pharmaceutical Formulations. The method is based on the oxidation of FA by Fe (III) in sulfuric acid medium. Fe (III) subsequently reduces to Fe (II) which is coupled with potassium ferricyanide to form Prussian blue. The reaction is followed spectrophotometrically by measuring the increase in absorbance at λmax 725 nm. The rate data and fixed time methods were adopted for constructing the calibration curves. The linearity range was found to be 1–20 μg mL-1 for each method. The correlation coefficient was 0.9978 and 0.9993, and LOD was found to be 0.91 and 0.09 μg mL-1 for rate data and fixed time methods, respectively. The proposed method has been successfully applied to the determination of FA in formulations with no interference from the excipients. Statical comparison of the results shows that there is no significant difference between the proposed and pharmacopoeial methods


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (02) ◽  
pp. 16-20
Author(s):  
L Mohankrishna ◽  
◽  
P. J. Reddy ◽  
B. P Reddy. ◽  
P. Navya

A sensitive and precise HPLC procedure has been developed for the assay of amphotericin B in bulk samples and pharmaceutical formulations by using a C18 column [Kromosil, C18, (5 µm, 4.6mm x 250 mm; Make. Waters)], and mobile phase combination is 1% formic acid in water and acetonitrile in ratio of 45:55 V/V. The procedure has been validated as per the ICH guidelines. The λmax of detection was fixed at 407 nm, so that there was less interference from mobile phase with highest sensitivity according to UV analysis. Calibration plots were linear in the range of 10-100 µg/mL and the LOD and LOQ were 0.02 µg/mL and 0.06 µg/mL respectively. The high recovery and low relative standard deviation confirm the suitability of the method for routine quality control determination of amphotericin B in different formulations.


2010 ◽  
Vol 46 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Adriano Antunes Souza Araújo ◽  
Marília dos Santos Bezerra ◽  
Sílvia Storpirtis ◽  
Jivaldo do Rosário Matos

The determination of chemical purity, melting range, and variation of enthalpy in the process of characterizing medicines is one of the principal requirements evaluated in quality control of the pharmaceutical industry. In this study, the method of purity determination using DSC was outlined, as well as the application of this technique for the evaluation of commercial samples of zidovudine (AZT) (raw material) supplied by different laboratories. To this end, samples from six different laboratories (A, B, C, D, E, and F) and the standard reference (R) from the United States Pharmacopeia (USP) were analyzed. The DSC curves were obtained in the temperature range of 25 to 200 ºC under the dynamic atmosphere of N2 (50 mL min-1), heating rate of β=2 ºC min-1, using an Al capsule containing approximately 2 mg of sample material. The results demonstrated that the standard reference presented a proportion of 99.83% whereas the AZT samples presented a variation ranging from 97.59 to 99.54%. In addition, the standard reference was found to present a temperature of onset of melting point of 122.80 °C. Regarding the samples of active agents provided by the different laboratories, a variation ranging from 118.70 to 122.87 °C was measured. In terms of ΔHm, the samples presented an average value of 31.12 kJ mol-1.


Sign in / Sign up

Export Citation Format

Share Document