scholarly journals Available Lysine in Foods: A Brief Historical Overview

2008 ◽  
Vol 91 (4) ◽  
pp. 901-906 ◽  
Author(s):  
Paul J Moughan ◽  
Shane M Rutherfurd

Abstract A brief historical overview is presented on the development of the science addressing lysine bioavailability in foods. Early observations that dietary protein utilization did not always correlate with gross amino acid composition led to an understanding that the amino acid lysine, in particular, can be easily damaged during food processing. Conventional amino acid analysis, involving a strong acid hydrolysis step, can lead to a significant degree of overestimation of lysine in processed foods. More recently, it has been found that not only food lysine content values but also estimates of lysine digestibility and digestible lysine contents may be erroneous. Estimates of absorbed (true ileal digestible) reactive lysine are accurate measures of available lysine. Technically, bioassays such as the slope-ratio assay determine utilized rather than available lysine.

2007 ◽  
Vol 20 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Shane M. Rutherfurd ◽  
Paul J. Moughan

Lysine is an important indispensable amino acid, and describing the lysine content of a food or feedstuff provides useful information about nutritional value. However, when a food or feedstuff is subjected to heating the lysine present can be altered to nutritionally unavailable derivatives. These derivatives can revert back to lysine during the acid hydrolysis step used in amino acid analysis causing an overestimate of the lysine content. There have been many chemical methods developed to determine the reactive (unmodified) lysine content of foods and feedstuffs, but these do not take into account the incomplete absorption of lysine from the small intestine. There are also a number of animal-based assays for determining available lysine (the lysine that can be absorbed in a form that can be used for protein synthesis). The true ileal amino acid digestibility assay is commonly used to determine amino acid availability and is accurate for application to unprocessed foods and feedstuffs but is not accurate for lysine and possibly other amino acids when applied to heat-processed foods or feedstuffs. For such protein sources, assays such as the slope-ratio assay, indicator amino acid oxidation assay and the BIOLYSINE™ assay (true ileal digestible reactive lysine assay) have been developed to determine available lysine. The present paper discusses the efficacy of the BIOLYSINE™ assay as well as other assays for determining available lysine in processed foods and feedstuffs.


2012 ◽  
Vol 108 (S2) ◽  
pp. S298-S305 ◽  
Author(s):  
Shane M. Rutherfurd ◽  
Paul J. Moughan

Available amino acids are those absorbed from the gastrointestinal tract in a form suitable for body protein synthesis. True ileal digestible amino acids are determined based on the difference between dietary amino acid intake and unabsorbed dietary amino acids at the terminal ileum. The accuracy of ileal digestible amino acid estimates for predicting available amino acid content depends on several factors, including the accuracy of the amino acid analysis procedure. In heat processed foods, lysine can react with compounds to form nutritionally unavailable derivatives that are unstable during the hydrochloric acid hydrolysis step of amino acid analysis and can revert back to lysine causing an overestimate of available lysine. Recently, the true ileal digestible reactive (available) lysine assay based on guanidination has provided a means of accurately determining available lysine in processed foods. Methionine can be oxidised during processing to form methionine sulphoxide and methionine sulphone and cysteine oxidised to cysteic acid. Methionine sulphoxide, but not methionine sulphone or cysteic acid, is partially nutritionally available in some species of animal. Currently, methionine and cysteine are determined as methionine sulphone and cysteic acid respectively after quantitative oxidation prior to acid hydrolysis. Consequently, methionine and cysteine are overestimated if methionine sulphone or cysteic acid are present in the original material. Overall, given the problems associated with the analysis of some amino acids in processed foodstuffs, the available amino acid content may not always be accurately predicted by true ileal amino acid digestibility estimates. For such amino acids specific analytical strategies may be required.


1984 ◽  
Vol 25 (5) ◽  
pp. 907-907
Author(s):  
Tetsuo Murakami ◽  
Takeshi Yamaguchi ◽  
Yoshitomi Iizuk

2021 ◽  
pp. 101312
Author(s):  
Dima White ◽  
Roshan Adhikari ◽  
Jinquan Wang ◽  
Chongxiao Chen ◽  
Jae Hwan Lee ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1469
Author(s):  
Patricia M. Rusu ◽  
Andrea Y. Chan ◽  
Mathias Heikenwalder ◽  
Oliver J. Müller ◽  
Adam J. Rose

Prior studies have reported that dietary protein dilution (DPD) or amino acid dilution promotes heightened water intake (i.e., hyperdipsia) however, the exact dietary requirements and the mechanism responsible for this effect are still unknown. Here, we show that dietary amino acid (AA) restriction is sufficient and required to drive hyperdipsia during DPD. Our studies demonstrate that particularly dietary essential AA (EAA) restriction, but not non-EAA, is responsible for the hyperdipsic effect of total dietary AA restriction (DAR). Additionally, by using diets with varying amounts of individual EAA under constant total AA supply, we demonstrate that restriction of threonine (Thr) or tryptophan (Trp) is mandatory and sufficient for the effects of DAR on hyperdipsia and that liver-derived fibroblast growth factor 21 (FGF21) is required for this hyperdipsic effect. Strikingly, artificially introducing Thr de novo biosynthesis in hepatocytes reversed hyperdipsia during DAR. In summary, our results show that the DPD effects on hyperdipsia are induced by the deprivation of Thr and Trp, and in turn, via liver/hepatocyte-derived FGF21.


Author(s):  
Jorn Trommelen ◽  
Andrew M. Holwerda ◽  
Philippe J. M. Pinckaers ◽  
Luc J. C. van Loon

All human tissues are in a constant state of remodelling, regulated by the balance between tissue protein synthesis and breakdown rates. It has been well-established that protein ingestion stimulates skeletal muscle and whole-body protein synthesis. Stable isotope-labelled amino acid methodologies are commonly applied to assess the various aspects of protein metabolism in vivo in human subjects. However, to achieve a more comprehensive assessment of post-prandial protein handling in vivo in human subjects, intravenous stable isotope-labelled amino acid infusions can be combined with the ingestion of intrinsically labelled protein and the collection of blood and muscle tissue samples. The combined application of ingesting intrinsically labelled protein with continuous intravenous stable isotope-labelled amino acid infusion allows the simultaneous assessment of protein digestion and amino acid absorption kinetics (e.g. release of dietary protein-derived amino acids into the circulation), whole-body protein metabolism (whole-body protein synthesis, breakdown and oxidation rates and net protein balance) and skeletal muscle metabolism (muscle protein fractional synthesis rates and dietary protein-derived amino acid incorporation into muscle protein). The purpose of this review is to provide an overview of the various aspects of post-prandial protein handling and metabolism with a focus on insights obtained from studies that have applied intrinsically labelled protein under a variety of conditions in different populations.


1993 ◽  
Vol 264 (6) ◽  
pp. G1057-G1065 ◽  
Author(s):  
C. Moundras ◽  
C. Remesy ◽  
C. Demigne

The aim of the present study was to evaluate the effect of changes in dietary protein level on overall availability of amino acids for tissues. For this purpose, rats were adapted to diets containing various concentrations of casein (7.5, 15, 30, and 60%) and were sampled either during the postprandial or postabsorptive period. In rats fed the protein-deficient diet, glucogenic amino acids (except threonine) tended to accumulate in plasma, liver, and muscles. In rats fed high-protein diets, the hepatic balance of glucogenic amino acids was markedly enhanced and their liver concentrations were consistently depressed. This response was the result of a marked induction of amino acid catabolism (a 45-fold increase of liver threonine-serine dehydratase activity was observed with the 60% casein diet). The muscle concentrations of threonine, serine, and glycine underwent changes parallel to plasma and liver concentrations, and a significant reduction of glutamine was observed. During the postabsorptive period, adaptation to high-protein diets resulted in a sustained catabolism of most glucogenic amino acids, which accentuated the drop in their concentrations (especially threonine) in all the compartments studied. The time course of metabolic adaptation from a 60 to a 15% casein diet has also been investigated. Adaptation of alanine and glutamine metabolism was rapid, whereas that of threonine, serine, and glycine was delayed and required 7-11 days. This was paralleled by a relatively slow decay of liver threonine-serine dehydratase (T-SDH) activity in contrast to the rapid adaptation of pyruvate kinase activity after refeeding a high-carbohydrate diet.(ABSTRACT TRUNCATED AT 250 WORDS)


1975 ◽  
Vol 34 (3) ◽  
pp. 363-373 ◽  
Author(s):  
E. Wetnli ◽  
T. R. Morris ◽  
T. P. Shresta

1. Three growth trials were done using male broiler chicks. In the first two trials, groundnut meal was used, with and without supplementary methionine and lysine. In the third trial, soya-bean meal was used with and without supplementary methionine. Protein levels ranged in the first trial from 120 to 420 g/kg diet and in the third trial from 120 to 300 g/kg diet. Thus the assumed minimal amino acid requirements of the chick were supplied by high levels of low-quality dietary protein.2. Diets based on cereals and groundnut meal did not support maximum live-weight gain or maximum efficiency of food utilization at any level of dietary protein. When the principal deficiencies of lysine and methionine were corrected, this protein mixture was capable of supporting the same growth rate as a control diet of cereals and herring meal.3. Diets based on maize and soya-bean meal did not support quite the same growth rate as similar diets supplemented with methionine, even though the protein level in the unsupplemented diets was sufficient to meet the assumed methionine requirements.4. These results are interpreted as examples of amino acid imbalance in diets composed of familiar feeding-stuffs. It is concluded that one cannot assume that the poor quality of a protein source can always be offset by increasing the concentration of dietary protein.


2019 ◽  
Vol 115 ◽  
pp. 69-78 ◽  
Author(s):  
Oleh Lushchak ◽  
Olha M. Strilbytska ◽  
Ihor Yurkevych ◽  
Alexander M. Vaiserman ◽  
Kenneth B. Storey

Sign in / Sign up

Export Citation Format

Share Document