scholarly journals PSIX-17 Investigating the biological activities of sodium cellobionate produced from cellulosic biomass

2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 187-187
Author(s):  
Lauren Kovanda ◽  
Zhiliang Fan ◽  
Xunde Li ◽  
Yanhong Liu

Abstract A novel method has been developed to easily hydrolyze cellulose to sodium cellobionate in a filamentous fungas, Neurospora crassa. The objectives of this experiment were to investigate the in vitro biological activities of sodium cellobionate. Antioxidant activity was evaluated with 3 chemical-based assays, including DPPH radical scavenging assay (DPPH), Trolox equivalent antioxidant capacity assay (TEAC), and ferric reducing antioxidant power assay (FRAP). Antimicrobial activity was determined as minimum inhibitory concentration (MIC) that prevented growth of tested bacteria, including four gram-negative bacteria (Escherichia coli F18 and ATCC 25922, and Salmonella Typhimurium ATCC 14028 and a wild strain isolated from cull diary cows in California) and one gram-positive bacteria (Enterococcus faecalis ATCC 29212). Anti-inflammatory activity was tested by analyzing TNF-α production with porcine alveolar macrophages that were challenged with lipopolysaccharide. A porcine intestinal epithelial cell line, IPEC-J2, was also used to test the effects of cellobionate on cell proliferation of intestinal epithelial cells. The tested doses of sodium cellobionate were 0, 0.04, 0.20, 1.00, 2.00, 4.00, 20.00, and 40.00 mg/mL. All assays were performed with over 6 replicates, except that MIC assays were performed as triplicate. All data were analyzed by PROC MIXED of SAS. Sodium cellobionate did not have radical scavenging capacity, but had weak FRAP (9.68 μM L-Cysteine equivalent) and TEAC (69% reduction) at the dose of 40 mg/mL. MIC results revealed that sodium cellobionate did not inhibit the growth of all tested bacteria, indicating it does not have antimicrobial activity within the range of tested doses. Sodium cellobionate did not exhibit anti-inflammatory activities, but significantly enhanced (P < 0.05) intestinal epithelial cell proliferation in vitro by 24.00%, 39.64%, and 25.98% when the doses were 1.00, 2.00, and 4.00 mg/mL, respectively. Results of this experiment indicate that cellobionate has limited biological activities in vitro, except that this biomass product could strongly stimulate the proliferation of intestinal epithelial cells. Future research will focus on the potential impacts of sodium cellobionate on intestinal physiology in vivo.

1998 ◽  
Vol 275 (3) ◽  
pp. G556-G563 ◽  
Author(s):  
Takeharu Shigematsu ◽  
Soichiro Miura ◽  
Masahiko Hirokawa ◽  
Ryota Hokari ◽  
Hajime Higuchi ◽  
...  

Endothelin (ET), a vasoconstrictive peptide, is known to have a variety of biological actions. Although ET is released by vascular endothelial cells, other cell populations also have been reported to synthesize and release ET. In this study, we examined whether ET is synthesized by intestinal epithelial cells and whether it affects induction of epithelial cell proliferation by interleukin-2 (IL-2). Subconfluent monolayers of intestinal epithelial cells (IEC-6 and IEC-18) were maintained in serum-free medium before addition of rat IL-2. Both IEC-6 and IEC-18 cells released ET-1 into the medium under unstimulated conditions, as determined by a sandwich ELISA. IL-2 significantly enhanced ET-1 release in a time-dependent manner. ET-3 was not detectable in the culture media of either cell line. Expression of ET-1 and ET-3 mRNA in epithelial cells was assessed by competitive PCR. Both cell lines were shown to express ET-1 mRNA, but no ET-3 mRNA was detected. IL-2 treatment enhanced ET-1 mRNA expression by both IEC-6 and IEC-18 cells. Both cell lines also expressed mRNA for ETA and ETB receptor subtypes. When cell proliferation was assessed, exogenous ET-1 induced a slight proliferative response in both types of cells that was consistent and significant at low ET-1 concentrations; cell growth was inhibited at a higher concentration (10−7M). IL-2 produced a significant proliferative response in both cell lines. However, the addition of ET-1 (10−7 M) to culture media attenuated the IL-2-induced increase in cell proliferation. ETA-receptor antagonists significantly enhanced cellular proliferation, suggesting involvement of the ETA receptor in modulation of IL-2-induced intestinal epithelial cell growth.


2012 ◽  
Vol 303 (3) ◽  
pp. G356-G366 ◽  
Author(s):  
Steven H. Young ◽  
Nora Rozengurt ◽  
James Sinnett-Smith ◽  
Enrique Rozengurt

We have examined the role of protein kinase D1 (PKD1) signaling in intestinal epithelial cell migration. Wounding monolayer cultures of intestinal epithelial cell line IEC-18 or IEC-6 induced rapid PKD1 activation in the cells immediately adjacent to the wound edge, as judged by immunofluorescence microscopy with an antibody that detects the phosphorylated state of PKD1 at Ser916, an autophosphorylation site. An increase in PKD1 phosphorylation at Ser916 was evident as early as 45 s after wounding, reached a maximum after 3 min, and persisted for ≥15 min. PKD1 autophosphorylation at Ser916 was prevented by the PKD family inhibitors kb NB 142-70 and CRT0066101. A kb NB 142-70-sensitive increase in PKD autophosphorylation was also elicited by wounding IEC-6 cells. Using in vitro kinase assays after PKD1 immunoprecipitation, we corroborated that wounding IEC-18 cells induced rapid PKD1 catalytic activation. Further results indicate that PKD1 signaling is required to promote migration of intestinal epithelial cells into the denuded area of the wound. Specifically, treatment with kb NB 142-70 or small interfering RNAs targeting PKD1 markedly reduced wound-induced migration in IEC-18 cells. To test whether PKD1 promotes migration of intestinal epithelial cells in vivo, we used transgenic mice that express elevated PKD1 protein in the small intestinal epithelium. Enterocyte migration was markedly increased in the PKD1 transgenic mice. These results demonstrate that PKD1 activation is one of the early events initiated by wounding a monolayer of intestinal epithelial cells and indicate that PKD1 signaling promotes the migration of these cells in vitro and in vivo.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 38-39
Author(s):  
Peng Lu ◽  
Changning Yu ◽  
Shangxi Liu ◽  
Joshua Gong ◽  
Song Liu ◽  
...  

Abstract Deoxynivalenol (DON) contamination occurs on feed ingredients and causes a reduction in growth performance, damage to the intestinal epithelial cells, and increased susceptibility to enteric pathogen challenge. Sodium metabisulfite (SMBS) has been successfully used to destroy DON in processed grains or feeds. However, SMBS degrades quickly under aqueous acid conditions, such as pig stomachs, and when SMBS is added to diet, little will remain intact in the small intestine where an optimal pH environment exists for detoxification by SMBS. Thus, this study was to encapsulate SMBS into microparticles to deliver intact SMBS to the small intestine and evaluate its efficacy of DON detoxification in the simulated intestine fluid (SIF) using an in vitro intestinal epithelial cell (IPEC-J2) model. The results showed that around 40% of the SMBS loading capacity was achieved in the microparticles. In vitro release studies showed that 1.61% of encapsulated SMBS was released in the simulated gastric fluid (SGF), and the majority of encapsulated SMBS (75.52%) was progressively released in the SIF within 6 h at 37 °C. In vitro cell experiments showed that DON treated with the SIF containing 0.5% SMBS for 2 h completely attenuated the DON-induced cytotoxicity. When DON was treated with the SGF containing 0.5% encapsulated SMBS for 2 h and then the mixture was mixed with the SIF (1:1) and incubated for 2 h, it also completely attenuated the DON-induced cytotoxicity. Moreover, DON treated with the simulated fluid containing 0.5% encapsulated SMBS completely attenuated the gene expression inflammatory cytokines upregulated by DON and restored trans-epithelial electrical resistance (TEER) and tight junction and cytoskeleton. In summary, the encapsulation of SMBS was stable in SGF and allowed a progressive release of SMBS in the SIF. Moreover, the released SMBS in the SIF effectively attenuated the adverse effects induced by DON in the intestinal epithelial cells.


1989 ◽  
Vol 35 (6) ◽  
pp. 642-645 ◽  
Author(s):  
D. Sasmal ◽  
B. Guhathakurta ◽  
S. N. Sikdar ◽  
A. Datta

The adhesive capability of Vibrio cholerae 01 strains to isolated rabbit intestinal epithelial cells was maximally expressed when the bacteria were grown in synthetic broth and was enhanced by the presence of Ca2+ in the growth media. N-Acetyl-D-glucosamine could inhibit the adhesion of the bacteria to rabbit intestinal epithelial cells as could lipopolysaccharide O-antigen from Vibrio cholerae 01 and lectin from Triticum vulgaris. Since the lipopolysaccharide is known to contain N-acetyl-D-glucosamine and because the lectin from Triticum vulgaris shows specificity for this sugar, it is probable that N-acetyl-D-glucosamine is actively involved in the adhesion of Vibrio cholerae 01 to isolated rabbit intestinal epithelial cells.Key words: adhesion, Vibrio cholerae 01, rabbit intestinal epithelial cell.


2006 ◽  
Vol 74 (9) ◽  
pp. 5382-5390 ◽  
Author(s):  
Shaoguang Wu ◽  
Jai Shin ◽  
Guangming Zhang ◽  
Mitchell Cohen ◽  
Augusto Franco ◽  
...  

ABSTRACT The Bacteroides fragilis toxin (BFT) is the only known virulence factor of enterotoxigenic B. fragilis. BFT has previously been shown to act, at least in part, through cleavage of the intercellular adhesion protein E-cadherin. A specific cellular receptor for BFT has not been identified. The goal of this study was to determine if the initial interaction of BFT with intestinal epithelial cells was consistent with binding to a specific cellular receptor. Purified BFT was labeled with a fluorophore or iodide to assess specific cellular binding and the properties of BFT cellular binding. BFT binds specifically to intestinal epithelial cell lines in vitro in a polarized manner. However, specific binding occurs only at 37°C and requires BFT metalloprotease activity. The BFT receptor is predicted to be a membrane protein other than E-cadherin or a known protease-activated receptor (PAR1 to PAR4). BFT binding is resistant to acid washing, suggesting an irreversible interaction. Sugar or lipid residues do not appear to be involved in the mechanism of BFT cellular binding, but binding is sensitive to membrane cholesterol depletion. We conclude that intestinal epithelial cells in vitro possess a specific membrane BFT receptor that is distinct from E-cadherin. The data favor a model in which the metalloprotease domain of BFT processes its receptor protein, initiating cellular signal transduction that mediates the biological activity of BFT. However, activation of recognized protease-activated receptors does not mimic or block BFT biological activity or binding, suggesting that additional protease-activated receptors on intestinal epithelial cells remain to be identified.


1999 ◽  
Vol 80 (10) ◽  
pp. 1550-1557 ◽  
Author(s):  
C Booth ◽  
D F Hargreaves ◽  
J A Hadfield ◽  
A T McGown ◽  
C S Potten

2014 ◽  
Vol 81 (1) ◽  
pp. 73-81 ◽  
Author(s):  
Alison J Morgan ◽  
Lisa G Riley ◽  
Paul A Sheehy ◽  
Peter C Wynn

Colostrum consists of a number of biologically active proteins and peptides that influence physiological function and development of a neonate. The present study investigated the biological activity of peptides released from first day bovine colostrum through in vitro and in vivo enzymatic digestion. This was assessed for proliferative activity using a human intestinal epithelial cell line, T84. Digestion of the protein fraction of bovine colostrum in vitro was conducted with the enzymes pepsin, chymosin and trypsin. Pepsin and chymosin digests yielded protein fractions with proliferative activity similar to that observed with undigested colostrum and the positive control foetal calf serum (FCS). In contrast trypsin digestion significantly (P<0·05) decreased colostral proliferative activity when co-cultured with cells when compared with undigested colostrum. The proliferative activity of undigested colostrum protein and abomasal whey protein digesta significantly increased (P<0·05) epithelial cell proliferation in comparison to a synthetic peptide mix. Bovine colostrum protein digested in vivo was collected from different regions of the gastrointestinal tract (GIT) in newborn calves fed either once (n=3 calves) or three times at 12-h intervals (n=3 calves). Digesta collected from the distal duodenum, jejunum and colon of calves fed once, significantly (P<0·05) stimulated cell proliferation in comparison with comparable samples collected from calves fed multiple times. These peptide enriched fractions are likely to yield candidate peptides with potential application for gastrointestinal repair in mammalian species.


1995 ◽  
Vol 182 (4) ◽  
pp. 1079-1088 ◽  
Author(s):  
Y Li ◽  
X Y Yio ◽  
L Mayer

The activation of CD8+ suppressor T cells by normal intestinal epithelial cells in antigen-specific or allogeneic mixed cell culture systems has significant implications for the regulation of mucosal immune responses. In this study, we found that the capacity of epithelial cells to induce CD8+ suppressor T cell activation appeared to be linked to the binding of CD8 molecules on the T cell surface. This appears to be mediated by a non-class I molecule expressed on the epithelial cell surface, which binds to CD8 and results in the activation of the CD8-associated src-like tyrosine kinase, p56lck. Epithelial cell-stimulated p56lck activation is an early event (in contrast to monocytes) and is essential for T cell activation, since proliferation could be completely abrogated by pretreatment of T cells with genestein or herbamycin, both of which are protein tyrosine kinase inhibitors. Pretreatment of T cells with anti-CD8 or of intestinal epithelial cells with an anti-epithelial cell mAb B9 inhibited p56lck activation and further confirmed that CD8 on the T cell and a CD8 ligand on the epithelial cell were involved in this T cell activation event. The specificity of this reaction was confirmed in experiments in which murine transfectants 3G4 and 3G8, expressing CD4 or CD8, respectively, were used. Coculture of 3G8 with epithelial cells but not with monocytes activated p56lck in this cell line, whereas p56lck was preferentially activated in 3G4 cells when monocytes were used as the stimulator cells. Although stimulation through CD8- and CD8-associated p56lck was important for epithelial cell-induced T cell activation, T cell proliferation could not be induced by cross-linking CD8 alone with monoclonal antibody anti-CD8. These data suggest that a second signal, possibly through the T cell antigen receptor since activation of the T cell receptor-associated kinase fyn was also seen, is required for epithelial cell-driven T cell proliferation.


1993 ◽  
Vol 265 (2) ◽  
pp. G214-G218 ◽  
Author(s):  
B. L. Tepperman ◽  
J. F. Brown ◽  
B. J. Whittle

The present study determined the presence of constitutive and inducible nitric oxide (NO) synthase activities in intestinal isolated epithelial cells and the effects of NO induction on intestinal epithelial cell viability. Epithelial cells were isolated from rat proximal small intestine by dispersion using citrate and EDTA. Constitutive NO synthase activity, determined by [14C]arginine conversion to citrulline that was inhibited by in vitro incubation with the arginine analogue NG-monomethyl-L-arginine (L-NMMA; 300 microM) or ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA; 1 mM), was observed in these cells. Administration of Escherichia coli lipopolysaccharide (LPS; 3 mg/kg iv) significantly augmented NO synthase activity (determined 4 h later), which was inhibited in vitro by incubation with L-NMMA but not by EGTA. The highest level of constitutive and inducible NO synthase activity occurred in intestinal villus cells, and the lowest was in crypt cells. Induction of NO synthase activity was associated with a decrease in cellular viability as assessed by a decrease in trypan blue exclusion. Dexamethasone pretreatment (1 mg/kg iv 2 h before LPS administration) significantly reduced both induction of NO synthase activity and the reduction in cellular viability. Likewise concurrent administration of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (10 mg/kg sc) ameliorated the reduction in cell viability induced by LPS administration, an effect abolished by pretreatment with the NO substrate L-arginine (350 mg/kg sc). Whereas constitutively formed NO may have a physiological role in these cells, the results in this study suggest that induction of NO synthase in epithelial cells may represent a mechanism of local intestinal damage.


2007 ◽  
Vol 292 (1) ◽  
pp. G231-G241 ◽  
Author(s):  
M. Neunlist ◽  
P. Aubert ◽  
S. Bonnaud ◽  
L. Van Landeghem ◽  
E. Coron ◽  
...  

Although recent studies have shown that enteric neurons control intestinal barrier function, the role of enteric glial cells (EGCs) in this control remains unknown. Therefore, our goal was to characterize the role of EGCs in the control of intestinal epithelial cell proliferation using an in vivo transgenic and an in vitro coculture model. Assessment of intestinal epithelial cell proliferation after ablation of EGCs in transgenic mice demonstrated a significant increase in crypt cell hyperplasia. Furthermore, mucosal glial network (assessed by immunohistochemical detection of S-100β) is altered in colon adenocarcinoma compared with control tissue. In an in vitro coculture model of subconfluent Caco-2 cells seeded onto Transwell filters with EGCs, Caco-2 cell density and [3H]thymidine incorporation were significantly lower than in control (Caco-2 cultured alone). Flow cytometry analysis showed that EGCs had no effect on Caco-2 cell viability. EGCs induced a significant increase in Caco-2 cell surface area without any sign of cellular hypertrophy. These effects by EGCs were also seen in various transformed or nontransformed intestinal epithelial cell lines. Furthermore, TGF-β1 mRNA was expressed, and TGF-β1 was secreted by EGCs. Exogenously added TGF-β1 reproduced partly the EGC-mediated effects on cell density and surface area. In addition, EGC effects on Caco-2 cell density were significantly reduced by a neutralizing TGF-β antibody. In conclusion, EGCs have profound antiproliferative effects on intestinal epithelial cells. Functional alterations in EGCs may therefore modify intestinal barrier functions and be involved in pathologies such as cancer or inflammatory bowel diseases.


Sign in / Sign up

Export Citation Format

Share Document