Combined effects of 3-nitrooxypropanol and canola oil supplementation on methane emissions, rumen fermentation and biohydrogenation, and total-tract digestibility in beef cattle

Author(s):  
Xiu Min Zhang ◽  
Megan L Smith ◽  
Robert J Gruninger ◽  
Limin Kung Jr ◽  
Diwakar Vyas ◽  
...  

Abstract The individual and combined effects of 3-nitrooxypropanol (3-NOP) and canola oil (OIL) supplementation on enteric methane (CH4) and hydrogen (H2) emissions, rumen fermentation and biohydrogenation, and total-tract nutrient digestibility were investigated in beef cattle. Eight beef heifers (mean body weight ± SD, 732 ± 43 kg) with ruminal fistulas were used in a replicated 4 × 4 Latin square with a 2 (with and without 3-NOP) × 2 (with and without OIL) arrangement of treatments and 28-d periods (13 d adaption, 15 d measurements). The four treatments were: control (no 3-NOP, no OIL), 3-NOP (200 mg/kg dry matter [DM]), OIL (50 g/kg DM), and 3-NOP (200 mg/kg DM) plus OIL (50 g/kg DM). Animals were fed restrictively (7.6 kg DM/d) a basal diet of 900 g/kg DM barley silage and 100 g/kg DM supplement. 3-NOP and OIL decreased (P < 0.01) CH4 yield (g/kg DM intake) by 31.6% and 27.4%, respectively, with no 3-NOP × OIL interaction (P = 0.85). Feeding 3-NOP plus OIL decreased CH4 yield by 51% compared with control. There was a 3-NOP × OIL interaction (P = 0.02) for H2 yield (g/kg DM intake); the increase in H2 yield (P < 0.01) due to 3-NOP was less when it was combined with OIL. There were 3-NOP × OIL interactions for molar percentages of acetate and propionate (P < 0.01); individually 3-NOP and OIL decreased acetate and increased propionate percentages, with no further effect when supplemented together. 3-NOP slightly increased crude protein (P = 0.02) and starch (P = 0.01) digestibilities, while OIL decreased digestibilities of DM (P < 0.01) and neutral detergent fiber (P < 0.01), with no interactions (P = 0.15 and 0.10, respectively). 3-NOP and OIL increased (P = 0.04 and P < 0.01, respectively) saturated fatty acid concentration in rumen fluid, with no interaction effect. Interactions for ruminal trans-monounsaturated fatty acids (t-MUFA) concentration and percentage were observed (P = 0.02 and P < 0.01); 3-NOP had no effect on t-MUFA concentration and percentage, while OIL increased the concentration (P < 0.01) and percentage (P < 0.01) of t-MUFA, but to a lesser extent when combined with 3-NOP. In conclusion, the CH4-mitigating effects of 3-NOP and OIL were independent and incremental. Supplementing ruminant diets with a combination of 3-NOP and OIL may help mitigate CH4 emissions, but the decrease in total-tract digestibility due to OIL may decrease animal performance and needs further investigation.

2020 ◽  
Vol 98 (5) ◽  
Author(s):  
Rodrigo S Goulart ◽  
Ricardo A M Vieira ◽  
Joao L P Daniel ◽  
Rafael C Amaral ◽  
Vanessa P Santos ◽  
...  

Abstract The objectives of this research were to evaluate the effects of source and concentration of α-amylase-treated neutral detergent fiber (aNDF) from roughage on feed intake, ingestive behavior, and ruminal kinetics in beef cattle receiving high-concentrate diets. Six ruminally cannulated Nellore steers (408 ± 12 kg of body weight) were randomly assigned to a 6 × 6 Latin square design with six diets: 10% aNDF from corn silage (10CS); 20% aNDF from corn silage (20CS); or four diets containing 10% aNDF from corn silage and 10% aNDF from one of the following sources: sugarcane (SC), sugarcane bagasse (SCB), soybean hulls (SH), or low oil cottonseed hulls (LOCH). The parameters of passage and degradation kinetics were estimated based on a two-compartmental model with gamma- and exponential-distributed residence times. The nonlinear models were fitted by nonlinear least squares, and a linear mixed-effects model was fitted to all variables measured from the Latin square design that were related to intake, digestibility, digestion kinetic parameters, and residence times. Mean particle size (MPS) between roughage sources (CS, SCB, and SC) and coproducts (SH and LOCH) was affected (P < 0.05). Dry matter intake (DMI) was not affected (P > 0.05) by 20CS, SC, SH, or LOCH. Steers fed 20CS or LOCH diets had 16% and 20% greater DMI, respectively, (P < 0.05) than steers fed 10CS diet. Steers fed SCB consumed the least dry matter (DM). The SH and LOCH diets had lower MPS values (about 8.77 mm) in comparison to 20CS, SCB, and SC diets (about 13.08 mm) and, consequently, affected (P < 0.05) rumen content, ruminal in situ disappearance, nutrient digestibility, and solid fractional passage rate. Chewing time was affected (P < 0.05) by roughage sources and concentration. Lower values of distance travel inside the rumen (min/cm) were observed (P < 0.05) for the SCB and SC diets in comparison with any other diet. Except for SCB, there was no difference (P > 0.05) in rumen fill, among other treatments. Mean daily ruminal pH was not affected (P > 0.05) by 20CS, SCB, SC, and LOCH diets, and it ranged from 6.1 to 6.23. Total short-chain fatty acids concentration was affected (P < 0.05) by roughage source and concentration. Based on our results, we recommend that under Brazilian finishing diets, replacing roughage sources, except for SCB, based on aNDF concentration of the roughage in high-concentrate diets containing finely ground flint corn does not affect DMI.


Author(s):  
Wantanee Polviset ◽  
Nattiya Prakobsaeng

This experiment was conducted to investigate the effect of palm oil and sunflower oil supplementations on digestibility and blood metabolites in crossbred Thai native x brahman bulls fed on TMR used rice straw as a roughage source. Four, 2 year old crossbred Thai native x Brahman bulls were randomly assigned in a 2x2 factorial in 4 x 4 latin square design. Each period of feeding lasted for 21 days to receive four dietary treatments; 3% palm oil, 6% palm oil, 3% sunflower oil and 6% sunflower oil. All animals were fed with TMR ad-libitum. It was found that supplementation of palm oil and sunflower oil had no effect on digestibility of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF) and crude protein (CP). Supplementation resulted in significant (P<0.05) lower acid detergent fiber (ADF) digestibility when feeding with palm oil on the other hand feeding beef cattle with 6% from palm oil and sunflower oil were higher Ether extract (EE) digestibility than 3% from twice oils (P<0.05). Blood glucose, blood urea nitrogen, cholesterol, triglyceride, high density lipoprotein and low density lipoprotein were not significant different among treatments. Based on this study, supplementing TMR sunflower oil in diets was suitable in beef cattle without any effect ruminal digestibility and blood metabolites.


1993 ◽  
Vol 41 (3) ◽  
pp. 221-234
Author(s):  
H. De Visser ◽  
H. Huisert ◽  
A. Klop ◽  
R.S. Ketelaar

In a 4 x 4 Latin square experiment the effects of DM content and/or the extent of fermentation in grass silages on the pattern of rumen fermentation and rumen kinetics were studied. In a separate study two cows were used to measure the rate of degradation using the dacron bag technique. Four rumen cannulated dairy cows were used to measure rumen fermentation pattern, rumen kinetics were measured in three of these animals. Basal diets (70% of total DM) consisted of maize silage, moist ensiled beet pulp, moist ensiled maize gluten feed, moist ensiled brewers' grains and a concentrate mixture. The remainder of the diet (30% of total DM) was wilted grass silage (WGS), high moisture grass silage with molasses (MGS), high moisture silage with formic acid (FGS) or wilted grass silage with additional water (WW). All diets were fed as complete feeds. pH of the rumen fluid was lower on the MGS and FGS diets. Concentrations of total VFA, acetic acid, ammonia and branched-chain fatty acids (BCFA) were highest on high moisture diets (MGS and FGS). Rates of clearance and digestion of the organic matter (OM) fractions were or showed tendencies towards being negatively influenced by both MGS and FGS, but remained unaffected by WGS and WW. Degradability of the grass silages was influenced by fermentation in the silo (lower digestible fractions and higher soluble fractions), as were rates of degradation (higher). Results of the degradability measured on the basal diet ingredients were in agreement with published literature and showed a strong correlation between OM digestibility in vitro and the undigestible fraction.


2017 ◽  
Vol 18 (1) ◽  
pp. 33
Author(s):  
Dwi Yulistiani ◽  
Wisri Puastuti ◽  
Budi Haryanto ◽  
Agung Purnomoadi ◽  
M. Kurihara ◽  
...  

<p>Feeding animal with fibrous materials such as corn cob will emit methane. Complete rumen modifier (CRM) is an improved feed additive comprised a mixture of Sapindus rarak, sesbania, albizia leaves and minerals that functions as a methane inhibitor. The study aimed to determine the effect of CRM supplementation on the feed intake, nutrient digestibility, rumen fermentation, methane emission and growth of lambs. The experiment was designed in a complete randomized block, four levels of CRM (0%, 1%, 2%, and 3%), six group of 24 male lambs per treatment based on the body weight.  Basal diet used was corn cob silage ad libitum and concentrate (500 g/day) as a supplement. The results showed that CRM supplementation did not affect feed consumption and average daily gain, but significantly decreased the dry matter, as well as organic matter and protein digestibility.  The neutral detergent fiber (NDF) and acid detergent fiber (ADF) digestibility linearly decreased with increasing level of CRM. Ruminal pH, ammonia concentration and volatile fatty acid (VFA) concentration were not affected by the CRM supplementation. Methane production expressed in kJ/MJ gross energy (GE) or digestible energy (DE) intake significantly decreased by 32% at the 2–3% CRM supplementation and reduced by 39% when methane production was expressed in g/kg digested NDF. It can be concluded that 2% CRM supplementation in the corn cob basal diet did not affect nutrient intake and growth rate of the lamb, as well as rumen fermentation.  The study suggests that CRM is an environmentally friendly feed additive for lamb</p>


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2379
Author(s):  
Bobo Deng ◽  
Yinyin Chen ◽  
Xiaoxiao Gong ◽  
Yi Dai ◽  
Kang Zhan ◽  
...  

Bacillus megaterium is an ideal microecologics in the feed industry. BM1259 was already isolated from chicken manure and the whole-genome sequencing was also analyzed in our previous study. However, few studies concentrated on dietary supplementation with BM1259 in young ruminants and especially its effect on Holstein bull calves have not been reported. Hence, this experiment was conducted with the aim to evaluate the effects of BM1259 on growth performance, nutrient digestibility, rumen fermentation, and blood biochemical parameters in Holstein bull calves. Twenty-four healthy Holstein bull calves with the initial age of 90 days old and a similar body weight (115 ± 6.5 kg) were selected and randomly allocated into two groups with one Holstein bull calf in each pen (2.5 m × 2.2 m). Holstein bull calves in the control group (COG) were fed a basal total mixed ration (TMR), while experimental treatments (BMG) were fed with the TMR diet supplemented with 12 g/head/day of BM1259 powder (1 × 1010 cfu/g) separately. Results showed that (1) the average daily gain and dry matter intake of the BMG were significantly higher than those of the COG (p < 0.01), increased by 12.5% and 8.79%, respectively, during the 4–8 weeks after the addition of 12 g/head/day of BM1259; from 0 to 8 weeks, ADG (p < 0.05) and DMI (p < 0.05) in the BMG were significantly higher than those in the COG, increased by 14.9% and 6.04%, respectively. (2) At the end of the fourth week, the apparent digestibility of crude protein and neutral detergent fiber in the BMG was significantly higher than that in the COG (p < 0.05), increased by 5.97% and 6.70%, respectively; at the end of the eighth week, the apparent digestibility of crude protein and neutral detergent fiber was significantly higher than that of the COG (p < 0.01), increased by 5.88% and 10.26%, respectively. (3) At the end of the eighth week, the rumen fluid pH (p < 0.05), MCP (p < 0.05), and acetate (p < 0.05) in the BMG were significantly higher than those in the COG, increased by 9.03%, 19.68%, and 12.74%, respectively; at the end of the fourth and eighth week, NH3-N concentration in the BMG was significantly lower than that in the COG, with a decrease of 21.81% and 16.40%, respectively. (4) At the end of the fourth (p < 0.05) and eighth week (p < 0.05), the glutamate content of the rumen fluid of the Holstein bull calves in the BMG was significantly higher than that in the COG, increased by 13.21% and 14.32%, respectively; at the end of the fourth week, the contents of glutamate in the serum (p < 0.05), urine (p < 0.05), and feces (p < 0.05) of the Holstein bull calves in the BMG were significantly lower than those in the COG, decreased by 25.76%, 33.87%, and 9.23%, respectively; at the end of the eighth week, the contents of glutamate in the serum, urine, and feces of the Holstein bull calves in the BMG were significantly lower than those in the COG (p < 0.01), decreased by 26.69%, 27.94%, and 11.11%, respectively. (5) After adding 12 g/head/day of BM1259, the urine ammonia–nitrogen content of the BMG was extremely significantly lower than that of the COG at the end of the fourth and eighth week (p < 0.01), decreased by 54.60% and 40.31%, respectively. (6) After adding 12 g/head/day of BM1259, there was no significant effect on the level of blood biochemical parameters of the Holstein bull calves. This study demonstrates that BM1259 can be applied as a potential microecologics to improve growth performance, nutrient digestibility, rumen fermentation, and nitrogen utilization in Holstein bull calves.


2020 ◽  
Author(s):  
Bounnaxay Viennasay ◽  
Metha Wanapat

Abstract Background: Good quality protein as an on-farm feed resources has been in great demand to support the productivity of ruminants. A digestion trial using beef cattle crossbreds was conducted to assess the four dietary treatments of Flemingia macrophylla silage (FMS) supplementation at 0, 0.2, 0.4 and 0.6 kg dry matter (DM)/day in a 4 × 4 Latin square design. Feed DM intakes were measured during the 14 days and sample of feeds, feces, urine, as well as rumen fluid, blood were collected during the 7 days while the animals were on metabolism crates.Results: Based on this experiment revealed that strategic supplementation of FMS increased (P < 0.05) nutrients digestibility (organic matter, crude protein, and acid detergent fiber) enhanced rumen total volatile fatty acid production especially propionic acid (C3), C2:C3 ratio while, remarkably promoted the microbial protein synthesis (MPS) by increasing N-balance and retention of purine derivatives.Conclusion: Under this experiment, the results revealed the potential use of FMS as a good-quality feed to improve nutrients digestibility, rumen fermentation, microbial protein synthesis, and to mitigate methane production. FMS supplementation at 0.6 kg DM/day exhibited the best result.


1969 ◽  
Vol 92 (1-2) ◽  
pp. 27-38
Author(s):  
Héctor L. Díaz-Ríos ◽  
Abner A. Rodríguez-Carias

Two experiments were conducted to determine the effect of supplementation with tilapia fish silage (FS) prepared in laboratory scale silos with addition of cane molasses, on intake and digestibility of tropical grass hay (GH) (Digitaria eriantha, 80%, and Urochloa maximum, 20%), and rhizome perennial peanut hay (RPPH) (Arachis glabrata). In Experiment I, GH was the basal diet and treatments were Control or T1 = GH, and GH supplemented daily with FS at 0.45% (T2) and 0.90% (T3) of the animal body weight (BW). In Experiment II, the basal diet was RPPH and treatments were Control or T1 = RPPH;T2 = RPPH supplemented daily with FS at 0.225% BW; and T3 = RPPH with 0.45% BW. In both experiments nine adult intact rams were used. The animals were fed for eight days of adaptation and six days of data collection in each period. Both experiments used a 3 X 3 Latin Square design. In experiment I dry matter (DM) intake and digestibility of GH increased (P less than 0.05) with FS supplementation, which also increased crude protein (CP) intake. CP digestibility increased (P < 0.05) at each level of supplementation compared to that of the control, but T2 and T3 did not differ significantly. Neutral detergent fiber (NDF) intake was higher (P < 0.05) in T1 than in T3 but similar in T1 and T2. Fiber digestibility was not affected (P greater than 0.05) by the treatments. It was concluded that supplementation of a GH basal diet with FS at 0.90% of BW is the best alternative. In Experiment II, DM digestibility of T3 differed (P less than 0.05) from that in T1 but in T2 did not differ from DM digestibility either in T1 or T3. Intake of DM, CP and fiber were similar in all treatments (P greater than 0.05). Crude protein digestibility was similar at both levels of supplementation and superior (P < 0.05) to that of the control, but fiber digestibility was not affected (P > 0.05). It is concluded that daily supplementation with FS for sheep fed a basal diet of RPPH should be limited to 0.225% of BW. Upon comparing both experiments, voluntary intake of DM, NDF and CP from RPPH was higher than from GH.The legume also showed a higher (P < 0.05) digestibility of DM and CP.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Bounnaxay Viennasay ◽  
Metha Wanapat

Abstract Background Good quality protein as an on-farm feed resource has been in great demand to support the productivity of ruminants. A digestion trial using beef cattle crossbreds was conducted to assess the four dietary treatments of Flemingia macrophylla silage (FMS) supplementation at 0, 0.2, 0.4 and 0.6 kg dry matter (DM)/day in a 4 × 4 Latin square design. Feed DM intakes were measured during the 14 days and sample of feeds, feces, urine, as well as rumen fluid and blood were collected during the 7 days while the animals were on metabolism crates. Results Based on this experiment strategic supplementation of FMS increased (P < 0.05) nutrients digestibility (organic matter, crude protein, and acid detergent fiber) enhanced rumen total volatile fatty acid production especially propionic acid (C3), C2:C3 ratio while, remarkably promoted the microbial protein synthesis (MPS) by increasing N-balance and retention of purine derivatives. Conclusions Under this experiment, the results revealed the potential use of FMS as a good-quality feed to improve nutrients digestibility, rumen fermentation, microbial protein synthesis, and to mitigate methane production. FMS supplementation at 0.6 kg DM/day exhibited the best result.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 85-85
Author(s):  
Charlotte Heyer ◽  
L F Wang ◽  
R T Zijlstra

Abstract Fermentable fiber may increase endogenous losses of P and AA, thereby reducing apparent nutrient digestibility. Acacia gum fiber with medium-to-high fermentability and low viscosity was used to investigate its effect on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients, and standardized total tract digestibility (STTD) of P in grower pigs. A P-free basal diet (49% corn starch; 18% bovine plasma protein) was formulated to measure basal endogenous P losses (EPL). Three diets were formulated to include 2.5, 5.0, or 7.5% acacia gum fiber at the expense of corn starch in the P-free basal diet. Diets contained 16.1–17.4% CP and 0.31–0.33% total P (DM-basis). The 4 diets were fed to 8 ileal-cannulated barrows (initial BW, 54.6 kg) for four 9-d periods in a double 4 × 4 Latin square. Apparent hindgut fermentation (AHF) was ATTD minus AID. Increasing inclusion of acacia gum quadratically decreased (P &lt; 0.01) AID of DM (∆ 11.1%), linearly decreased (P &lt; 0.05) ATTD of DM (∆ 1.7%) CP (∆ 1.2%), and quadratically increased (P &lt; 0.05) AHF of DM (∆ 9.4%). Basal EPL were 391 and 377 mg/kg DM intake (DMI) for ileum and total tract, respectively. Increasing inclusion of fiber linearly increased (P &lt; 0.05) ileal EPL (∆ 184 mg/kg DMI), and tended to linearly increase (P &lt; 0.10) EPL for total tract (∆ 243 mg/kg DMI). Dietary inclusion of acacia gum tended to linearly decrease (P &lt; 0.10) AID of P, but did not affect (P &gt; 0.10) ATTD, or STTD of P. In conclusion, increasing inclusion of fermentable, low viscous acacia gum fiber decreased diet digestibility of DM and ATTD of CP, but did not affect total tract P digestibility, indicating that increasing fermentable fiber did not increase specific endogenous losses of P in the total tract.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 55-56
Author(s):  
Noheli Gutierrez ◽  
Jamie A Boyd

Abstract A study was conducted to evaluate effects of increasing concentration of food grade glycerol on rumen environment and nutrient digestibility. Three ruminally cannulated Jersey steers were used in this study. The study was conducted from March to May 2019. Experimental design was a 3x3 Latin square with a 2wk adjustment period followed by a 1wk collection period. Diet was coastal bermudagrass hay based. Different forage types were introduced in the incubation process to evaluate digestibility. Glycerol was administered once a day at 0, 15, or 20% of DMI (dry matter intake). dNDF (digestible NDF) and dDM (digestible dry matter) was determined using an ANKOM Daisy II incubator inoculated with 200g fresh rumen fluid and incubated for 12, 24, 48 and 72 h at 39°C. Each vessel contained ground forage samples in filter bags in triplicate. After incubation, filter bags were rinsed with cold water and dried for 24h in a 55°C forced air oven. Data were analyzed using the Proc MIXED procedure of SAS version 9.4. There was no difference dNDF in effect of different levels of glycerol between forage types by diet. But a numerical tendency was observed that dNDF was decreased at 20% inclusion rates in comparison to 0 and 15% inclusion of glycerol in the diet. Neither steer nor run was significantly different in the study. However as expected digestibility over time was significantly different (P &lt; 0.001). A significant increase was observed in DMI with the increased levels of glycerol in the diet (P = 0.003), both the 15% and 20% levels of glycerol increased in DMI in comparison to the control (0%). It appears based on these study results that digestibility may be inhibited, as levels of dietary glycerol increase in the diet and more work needs to be done to find the optimal level of glycerol supplementation.


Sign in / Sign up

Export Citation Format

Share Document