Feeding either palm oil or sunflower oil on nutrient digestibility and blood metabolites in crossbred Thai native x Brahman bull

Author(s):  
Wantanee Polviset ◽  
Nattiya Prakobsaeng

This experiment was conducted to investigate the effect of palm oil and sunflower oil supplementations on digestibility and blood metabolites in crossbred Thai native x brahman bulls fed on TMR used rice straw as a roughage source. Four, 2 year old crossbred Thai native x Brahman bulls were randomly assigned in a 2x2 factorial in 4 x 4 latin square design. Each period of feeding lasted for 21 days to receive four dietary treatments; 3% palm oil, 6% palm oil, 3% sunflower oil and 6% sunflower oil. All animals were fed with TMR ad-libitum. It was found that supplementation of palm oil and sunflower oil had no effect on digestibility of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF) and crude protein (CP). Supplementation resulted in significant (P<0.05) lower acid detergent fiber (ADF) digestibility when feeding with palm oil on the other hand feeding beef cattle with 6% from palm oil and sunflower oil were higher Ether extract (EE) digestibility than 3% from twice oils (P<0.05). Blood glucose, blood urea nitrogen, cholesterol, triglyceride, high density lipoprotein and low density lipoprotein were not significant different among treatments. Based on this study, supplementing TMR sunflower oil in diets was suitable in beef cattle without any effect ruminal digestibility and blood metabolites.

2020 ◽  
Vol 98 (5) ◽  
Author(s):  
Rodrigo S Goulart ◽  
Ricardo A M Vieira ◽  
Joao L P Daniel ◽  
Rafael C Amaral ◽  
Vanessa P Santos ◽  
...  

Abstract The objectives of this research were to evaluate the effects of source and concentration of α-amylase-treated neutral detergent fiber (aNDF) from roughage on feed intake, ingestive behavior, and ruminal kinetics in beef cattle receiving high-concentrate diets. Six ruminally cannulated Nellore steers (408 ± 12 kg of body weight) were randomly assigned to a 6 × 6 Latin square design with six diets: 10% aNDF from corn silage (10CS); 20% aNDF from corn silage (20CS); or four diets containing 10% aNDF from corn silage and 10% aNDF from one of the following sources: sugarcane (SC), sugarcane bagasse (SCB), soybean hulls (SH), or low oil cottonseed hulls (LOCH). The parameters of passage and degradation kinetics were estimated based on a two-compartmental model with gamma- and exponential-distributed residence times. The nonlinear models were fitted by nonlinear least squares, and a linear mixed-effects model was fitted to all variables measured from the Latin square design that were related to intake, digestibility, digestion kinetic parameters, and residence times. Mean particle size (MPS) between roughage sources (CS, SCB, and SC) and coproducts (SH and LOCH) was affected (P &lt; 0.05). Dry matter intake (DMI) was not affected (P &gt; 0.05) by 20CS, SC, SH, or LOCH. Steers fed 20CS or LOCH diets had 16% and 20% greater DMI, respectively, (P &lt; 0.05) than steers fed 10CS diet. Steers fed SCB consumed the least dry matter (DM). The SH and LOCH diets had lower MPS values (about 8.77 mm) in comparison to 20CS, SCB, and SC diets (about 13.08 mm) and, consequently, affected (P &lt; 0.05) rumen content, ruminal in situ disappearance, nutrient digestibility, and solid fractional passage rate. Chewing time was affected (P &lt; 0.05) by roughage sources and concentration. Lower values of distance travel inside the rumen (min/cm) were observed (P &lt; 0.05) for the SCB and SC diets in comparison with any other diet. Except for SCB, there was no difference (P &gt; 0.05) in rumen fill, among other treatments. Mean daily ruminal pH was not affected (P &gt; 0.05) by 20CS, SCB, SC, and LOCH diets, and it ranged from 6.1 to 6.23. Total short-chain fatty acids concentration was affected (P &lt; 0.05) by roughage source and concentration. Based on our results, we recommend that under Brazilian finishing diets, replacing roughage sources, except for SCB, based on aNDF concentration of the roughage in high-concentrate diets containing finely ground flint corn does not affect DMI.


2021 ◽  
Vol 99 (1) ◽  
Author(s):  
Tao Ran ◽  
Atef M Saleem ◽  
Karen A Beauchemin ◽  
Gregory B Penner ◽  
Wenzhu Yang

Abstract The objective of this study was to investigate the effects of processing index (PI) of barley grain and dietary undigested neutral detergent fiber (uNDF) concentration on dry matter (DM) intake, chewing activity, ruminal pH and fermentation characteristics, total tract digestibility, gastrointestinal barrier function, and blood metabolites of finishing beef heifers. The PI was measured as the density after processing expressed as a percentage of the density before processing, and a smaller PI equates to a more extensively processed. Six ruminally cannulated heifers (average body weight, 715 ± 29 kg) were used in a 6 × 6 Latin square design with three PI (65%, 75%, and 85%) × 2 uNDF concentration (low and high; 4.6% vs. 5.6% of DM) factorial arrangement. The heifers were fed ad libitum a total mixed ration consisting of 10% barley silage (low uNDF), or 5% silage and 5% straw (high uNDF), 87% dry-rolled barley grain, and 3% mineral and vitamin supplements. Interactions (P &lt; 0.01) of PI × uNDF were observed for DM intake, ruminating and total chewing time, and DM digestibility in the total digestive tract. Intake of DM, organic matter (OM), starch, and crude protein (CP) did not differ (P &gt; 0.14) between low and high uNDF diets, but intakes of NDF and acid detergent fiber were greater (P = 0.01) for high uNDF diets regardless of barley PI. Heifers fed high uNDF diets had longer (P = 0.05) eating times (min/d or min/kg DM) and tended (P = 0.10) to have longer total chewing times (min/kg DM) than those fed low uNDF diets. Additionally, heifers sorted (P = 0.01) against long particles (&gt;19 mm) for high uNDF diets but not for low uNDF diets. Altering PI of barley grain did not affect (P &gt; 0.12) total volatile fatty acid (VFA) concentration, molar percentages of individual VFA, or duration of ruminal pH &lt; 5.8 and &lt;5.6. Total VFA concentration was less (P = 0.01), acetate percentage was greater (P = 0.01), and duration of ruminal pH &lt; 5.8 and &lt;5.6 was less (P = 0.05) for high compared with low uNDF diets. Digestibility of DM, OM, and CP was greater (P = 0.02) for low vs. high uNDF diets with PI of 65% and 75%, with no difference between low and high uNDF diets at PI of 85%. Blood metabolites and gastrointestinal tract barrier function were not affected (P ≥ 0.10) by the treatments. These results suggest that increasing dietary uNDF concentration is an effective strategy to improve ruminal pH status in finishing cattle, regardless of the extent of grain processing, whereas manipulating the extent of barley processing did not reduce the risk of ruminal acidosis.


2021 ◽  
Vol 99 (2) ◽  
Author(s):  
James R Vinyard ◽  
Cheyanne A Myers ◽  
Gordon K Murdoch ◽  
Pedram Rezamand ◽  
Gwinyai E Chibisa

Abstract Because of its high content of polyphenolic compounds, the dietary inclusion of grape pomace (GP) in ruminant diets can reduce reactive nitrogen (N) and methane emissions and enhance the shelf life and beneficial fatty acids (FAs) content of meat. However, the dietary inclusion of GP beyond a threshold that is still to be determined for feedlot cattle can also compromise nutrient supply and, thus, growth performance. This study investigated the optimum proportion of GP in finishing cattle diets. Nutrient intake and apparent total tract digestion, ruminal pH and fermentation, estimated microbial protein synthesis, route of N excretion, and blood metabolites were measured. Six ruminally fistulated crossbred beef heifers (mean initial body weight ± SD: 714 ± 50.7 kg) were used in a replicated 3 × 3 Latin square with 21-d periods. Dietary treatments were 0%, 15%, and 30% of dietary dry matter (DM) as GP, with diets containing 84%, 69%, and 54% dry-rolled barley grain, respectively. There was a linear increase (P = 0.07) in DM intake and quadratic change (P ≤ 0.01) in neutral detergent fiber (NDF) intake. There was a quadratic change (P ≤ 0.04) in apparent total tract DM, NDF, and crude protein digestibility as dietary GP content increased. However, there were no treatment effects (P ≥ 0.18) on total ruminal short-chain FA concentration and duration and area pH &lt; 6.2, 5.8, and 5.5. Although N intake did not differ (269, 262, 253 g/d; P = 0.33) across dietary treatments, feeding GP led to a tendency for a quadratic change (P ≤ 0.07) in ruminal ammonia-N and plasma urea-N concentrations. Total N excretion also changed (quadratic, P = 0.03) because of changes (quadratic, P = 0.02) in fecal N excretion as urinary excretion of N and urea-N did not differ (P ≥ 0.15) across treatments. Feeding GP led to quadratic changes (P ≤ 0.01) in fecal excretion of fiber-bound N. Microbial N flow and apparent N retention also changed (quadratic, P ≤ 0.04) as dietary GP proportion increased. In conclusion, responses to dietary GP proportion were mostly quadratic with indications that nutrient supply as reflected by changes in apparent total tract nutrient digestibility, microbial N supply, and apparent N retention could be compromised beyond a 15% dietary inclusion level.


2017 ◽  
Vol 57 (8) ◽  
pp. 1613 ◽  
Author(s):  
C. Promkot ◽  
P. Nitipot ◽  
N. Piamphon ◽  
N. Abdullah ◽  
A. Promkot

Saccharomyces cerevisiae has been used to enhance the protein level of low-protein feedstuffs such as cassava root. In the present study, fresh cassava root was grated and subjected to solid-state fermentation with S. cerevisiae to enhance the protein content. The fermentation process lasted for 21 days, followed by fermentation with yeast for 5 days. The fermented product was called yeast-fermented cassava root (YEFECAR). The YEFECAR was then evaluated as a feed ingredient at 10%, 20% and 30% dry matter in concentrate diet for dry matter intake and nutrient digestibility in non-pregnant female Brahman beef cattle (bodyweight 256 ± 11.5 kg). Four cattle were randomly given four treatments in 4 × 4 Latin square design for 21-day period, including a control diet (without fermented cassava root). Cattle were fed rice straw as roughage. The results showed that while dry matter intake was not significantly different among dietary treatments, average dairy gain tended to increase when fermented cassava root was fed at 20% in the concentrate diet. There were no significant differences in nutrient digestibility among the dietary treatments. However, neutral detergent fibre and acid detergent fibre digestibility showed an increasing trend when fermented cassava root was fed to the cattle. Likewise, fermented cassava root showed no effect on rumen microbial population, although rumen bacterial population and microbial protein tended to increase with YEFECAR addition. It was concluded that yeast-fermented cassava root at 20% in concentrate feed tended to enhance rumen bacteria population and neutral detergent fibre digestibility in cattle.


Author(s):  
Xiu Min Zhang ◽  
Megan L Smith ◽  
Robert J Gruninger ◽  
Limin Kung Jr ◽  
Diwakar Vyas ◽  
...  

Abstract The individual and combined effects of 3-nitrooxypropanol (3-NOP) and canola oil (OIL) supplementation on enteric methane (CH4) and hydrogen (H2) emissions, rumen fermentation and biohydrogenation, and total-tract nutrient digestibility were investigated in beef cattle. Eight beef heifers (mean body weight ± SD, 732 ± 43 kg) with ruminal fistulas were used in a replicated 4 × 4 Latin square with a 2 (with and without 3-NOP) × 2 (with and without OIL) arrangement of treatments and 28-d periods (13 d adaption, 15 d measurements). The four treatments were: control (no 3-NOP, no OIL), 3-NOP (200 mg/kg dry matter [DM]), OIL (50 g/kg DM), and 3-NOP (200 mg/kg DM) plus OIL (50 g/kg DM). Animals were fed restrictively (7.6 kg DM/d) a basal diet of 900 g/kg DM barley silage and 100 g/kg DM supplement. 3-NOP and OIL decreased (P &lt; 0.01) CH4 yield (g/kg DM intake) by 31.6% and 27.4%, respectively, with no 3-NOP × OIL interaction (P = 0.85). Feeding 3-NOP plus OIL decreased CH4 yield by 51% compared with control. There was a 3-NOP × OIL interaction (P = 0.02) for H2 yield (g/kg DM intake); the increase in H2 yield (P &lt; 0.01) due to 3-NOP was less when it was combined with OIL. There were 3-NOP × OIL interactions for molar percentages of acetate and propionate (P &lt; 0.01); individually 3-NOP and OIL decreased acetate and increased propionate percentages, with no further effect when supplemented together. 3-NOP slightly increased crude protein (P = 0.02) and starch (P = 0.01) digestibilities, while OIL decreased digestibilities of DM (P &lt; 0.01) and neutral detergent fiber (P &lt; 0.01), with no interactions (P = 0.15 and 0.10, respectively). 3-NOP and OIL increased (P = 0.04 and P &lt; 0.01, respectively) saturated fatty acid concentration in rumen fluid, with no interaction effect. Interactions for ruminal trans-monounsaturated fatty acids (t-MUFA) concentration and percentage were observed (P = 0.02 and P &lt; 0.01); 3-NOP had no effect on t-MUFA concentration and percentage, while OIL increased the concentration (P &lt; 0.01) and percentage (P &lt; 0.01) of t-MUFA, but to a lesser extent when combined with 3-NOP. In conclusion, the CH4-mitigating effects of 3-NOP and OIL were independent and incremental. Supplementing ruminant diets with a combination of 3-NOP and OIL may help mitigate CH4 emissions, but the decrease in total-tract digestibility due to OIL may decrease animal performance and needs further investigation.


Author(s):  
W. Polviset ◽  
N. Prakobsaeng ◽  
N. Wetchakama

Background: In Southeast Asia a high level with the agricultural productivity, especially rice straw is produced for livestock feed such as buffalo and beef cattle. However rice straw is poor quality (low in protein and its high silica content). Subsequently, ruminant nutritionists have established to increase the potential of poor quality roughages for animal feeding such as Total mixed ration (TMR) using rice straw as a roughage source with vegetable oils to increase energy density in the diet, that can improve by produced for ruminant diet. Methods: In this field-laboratory investigation during 2017-2018. Three animals, one and half year old with live weight 120 ± 15.50 kg, were randomly assigned in 3 x 3 latin square design. Each period of feeding lasted for 21 days. During the experimental periods, all cattle were fed total mixed ration (TMR; containing rice straw: concentrate ratio as 40:60), adding soybean oil (SO), palm oil (PO) and sunflower oil (SFO) supplementations. Total fat in TMRs were at 3 percentages. Result: Our investigations were to evaluate the effect of soybean oil (SO), palm oil (PO) and sunflower oil (SFO) supplementations at 3 percentages of total fat in total mixed ration on voluntary feed intake, digestibility, blood profile and fatty acid compositions in the plasma of crossbred Thai native x American Brahman Cattle. The results revealed that treatments did not affect voluntary feed intake (kgDM/head/day; g/KgW0.75) (P is greater than 0.05), but feeding with soybean oil, it was non significantly higher (2.94 kgDM/day). Additionally, nutrient intake and apparent digestibility of organic matter (OM),crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and rumen fermentation except total volatile fatty acids (VFAs) were not affected among all the three treatments, but dry matter (DM) digestibility in soybean and palm oil group animals were recorded significantly higher (P is less than 0.01) than sunflower oil. However blood glucose, blood urea nitrogen, cholesterol, triglyceride, high density lipoprotein and low density lipoprotein and fatty acid composition in plasma were not influenced due to treatments (P is greater than 0.05). Based on this study, feeding beef cattle with SO, PO and SFO should not exceed 3%? in TMR to achieve 7% without any adverse effect on nutrient utilization, rumen fermentation, blood profile and fatty acid compositions in plasma.


2020 ◽  
Vol 21 (3) ◽  
pp. 74-79
Author(s):  
Ahmed Elbaz ◽  
Said El-sheikh

Objective: To investigate the effect of antibiotics and/or probiotics on broiler performance, some serum metabolites, cecum microflora composition, and ileum histomorphology under the Egyptian conditions. Design: Randomized controlled experimental study. Animals: Two hundred forty 1-day-old Ross (308) chicks were reared till 35 days of age. Procedures: The birds were randomly allocated into four main groups: a control diet without additives (CON); probiotic (Lactobacillus acidophilus) supplemented diet (PRO); antibiotic (Avilamycin) supplemented diet (ANT) and a mix group (AP) that received antibiotic in the diet form 1 to 4 days of age and treated during the rest of the experimental period with probiotics. Results: Chickens fed on probiotic or antibiotic diets had linear improvement in live body weight (LBW) and feed conversion ratio (FCR) compared with the control group, while the best LBW and FCR were in the AP group. An improvement in the nutrient digestibility was observed in the probiotic added groups (PRO and AP). Serum cholesterol and low-density lipoprotein cholesterol contents decreased when antimicrobial (probiotic or antibiotic) supplementations were used, while there was an increase in high-density lipoprotein cholesterol contents, serum total protein, and albumin levels. Among all groups, cecum Clostridium perfringens and Escherichia coli counts decreased; however, there was an increase in Lactobacillus count compared to the control group. In probiotic supplemented groups (PRO and AP), a significant (P<0.05) improvement in ilea architecture. Conclusion and clinical relevance: Using probiotic after initial treatment with an antibiotic in broiler diets had a positive effect on broiler growth performance, gut health (improved cecum microbial populations and ileum histomorphology), and nutrient digestibility.


Author(s):  
Zachary T Traughber ◽  
Fei He ◽  
Jolene M Hoke ◽  
Gary M Davenport ◽  
Maria R C de Godoy

Abstract Ancient grains are becoming an increasingly abundant carbohydrate source in the pet food market as a result of their popularity and novelty in the human market. Thus, it is imperative to evaluate the characteristics of these ingredients in vivo. Ten adult intact female beagles were used in a replicated 5x5 Latin square design. Five dietary treatments were evaluated containing either: rice (CON), amaranth (AM), white proso millet (WPM), quinoa (QU), or oat groats (OG). All diets were formulated to include 40% of the test grain and to be isonitrogenous, isocaloric, and nutritionally complete and balanced for adult dogs at maintenance. The objectives were (1) to evaluate the effects of the novel carbohydrate sources on total apparent total tract digestibility (ATTD), fecal microbiota, and fermentative end-product concentrations and (2) to evaluate the effects of novel carbohydrate sources on the post-prandial glycemic and insulinemic responses in healthy adult dogs. All diets were well-accepted by the dogs and fecal scores remained within ideal range for all treatments. In terms of ATTD, all diets were well-digested by the dogs; WPM had the highest digestibility of dry and organic matter in contrast with dogs fed the other treatments (P &lt; 0.05). Additionally, ATTD of total dietary fiber was highest for WPM (72.6%) in contrast with QU (63.5%) and CON (50.8%) but did not differ from AM (65.7%) and OG (66.6%). Dogs fed AM or OG had greater (P &lt; 0.05) fecal concentrations of total short-chain fatty acids, as well as propionate and butyrate concentrations, than CON. Ancient grain inclusion appears to beneficially shift fecal microbial populations, with increases in relative abundances of butyrogenic bacteria (i.e., members of the Lachnospiraceae family) observed for OG and reductions in Fusobacteriaceae for both AM and OG when compared with CON. Post-prandial glycemic and insulinemic responses did not differ among treatments. Together, these data suggest that ancient grains can be included up to 40% of the diet while eliciting beneficial effects on overall host health without detrimentally affecting nutrient digestibility.


2020 ◽  
Vol 33 (5) ◽  
pp. 763-769
Author(s):  
Thiwakorn Ampapon ◽  
Metha Wanapat

Objective: The experiment was conducted to study the effect of rambutan (Nephelium lappaceum) fruit peel powder (RP) on feed consumption, digestibility of nutrients, ruminal fermentation dynamics and microbial population in Thai breed cattle.Methods: Four, 2-year old (250±15 kg) beef bull crossbreds (75% Brahman×25% local breed) were allotted to experimental treatments using a 4×4 Latin square design. Four dietary supplementation treatments were imposed; non-supplementation (control, T1); supplementation of RP fed at 2% of dry matter intake (DMI) (low, T2); supplementation of RP fed at 4% of DMI (medium, T3) and supplementation of RP fed at 6% of DMI (high, T4). All cattle were given a concentrate supplement at 1% of body weight while Napier grass was provided as a free choice.Results: The findings revealed that RP supplementation did not negatively affect (p>0.05) DMI of Napier grass, while RP intake and total DMI were the greatest in the RP supplementation at 4% and 6% DMI. Nevertheless, the nutrients (dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber) digestibilities were not changed in the RP supplementation groups. Rumen fermentation parameters especially those of total volatile fatty acids, acetate and butyrate were not significantly changed. However, the propionate concentration was remarkably increased (p<0.05) in the RP supplementation. Notably, the ratio of acetate to propionate, the number of protozoa, as well as the methane estimation were significantly reduced in the RP supplemented groups (4% and 6% of DMI), while the counts of bacteria was not altered.Conclusion: Supplementation of RP (4% of DMI) improved rumen propionate production, reduced protozoal population and methane estimation (p<0.05) without a negative effect on feed consumption and nutrients total tract digestibilities in beef cattle. Using dietary rambutan fruit peel powder has potential promise as a rumen regulator.


Author(s):  
N. Suphrap ◽  
C. Wachirapakorn ◽  
C. Thamrongyoswittayakul and C. Wongnen

This study was conducted to investigate the effect of vegetable oil and yeast fermented cassava pulp (YFCP) supplementation on feed intake, nutrient digestibility and rumen fermentation in Thai Friesian dairy cows (Thai native x Holstein Friesian). Eight Thai Friesian dairy cows (447±44 kg.BW) were assigned to 4×4 double latin square design (DLSD) with two sources of oil i.e. palm oil (PO) or soybean oil (SBO) and four levels of YFCP (0, 5, 10 and 20%DM) in the dietary treatments. All cows received total mixed ration (TMR) comprised of rice straw to concentrate at a ratio of 40:60. The results showed that supplementation of SBO had lowered feed intake, nutrients digestibility, metabolize energy intake (MEI), total digestible nutrient (TDN) and methane emission than PO treatment. However, cows received SBO had greater total volatile fatty acid (TVFA), propionic acid (C3), butyric acid (C4) than cows received on PO (P less than 0.05). In addition, supplementation of YFCP at 10%DM in the diet as an optimum level in dairy cow diets (P greater than 0.05). Finally, the interaction between the addition of SBO and YFCP at 10%DM (SBO+YFCP) had a positive effect on enhancing ether extract intake (EEI) in dairy cows.


Sign in / Sign up

Export Citation Format

Share Document