scholarly journals Modulating dynamics and function of nuclear actin with synthetic bicyclic peptides

Author(s):  
Nanako Machida ◽  
Daisuke Takahashi ◽  
Yuya Ueno ◽  
Yoshihiro Nakama ◽  
Raphael J Gubeli ◽  
...  

Abstract Actin exists in monomeric globular (G-) and polymerized filamentous (F-) forms and the dynamics of its polymerization/depolymerization are tightly regulated in both the cytoplasm and the nucleus. Various essential functions of nuclear actin have been identified including regulation of gene expression and involvement in the repair of DNA double-strand breaks (DSB). Small G-actin-binding molecules affect F-actin formation and can be utilized for analysis and manipulation of actin in living cells. However, these G-actin-binding molecules are obtained by extraction from natural sources or through complex chemical synthesis procedures, and therefore, the generation of their derivatives for analytical tools is underdeveloped. In addition, their effects on nuclear actin cannot be separately evaluated from those on cytoplasmic actin. Previously, we have generated synthetic bicyclic peptides, consisting of two macrocyclic rings, which bind to G-actin but not to F-actin. Here, we describe the introduction of these bicyclic peptides into living cells. Furthermore, by conjugation to a nuclear localization signal (NLS), the bicyclic peptides accumulated in the nucleus. The NLS-bicyclic peptides repress the formation of nuclear F-actin, and impair transcriptional regulation and DSB repair. These observations highlight a potential role for NLS-linked bicyclic peptides in the manipulation of dynamics and functions of nuclear actin.

2007 ◽  
Vol 18 (11) ◽  
pp. 4637-4647 ◽  
Author(s):  
Florence Jollivet ◽  
Graça Raposo ◽  
Ariane Dimitrov ◽  
Rachid Sougrat ◽  
Bruno Goud ◽  
...  

The Golgi complex is characterized by its unique morphology of closely apposed flattened cisternae that persists despite the large quantity of lipids and proteins that transit bidirectionally. Whether such a structure is maintained through endoplasmic reticulum (ER)-based recycling and auto-organization or whether it depends on a permanent Golgi structure is strongly debated. To further study Golgi maintenance in interphase cells, we developed a method allowing for a drug-free inactivation of Golgi dynamics and function in living cells. After Golgi inactivation, a new Golgi-like structure, containing only certain Golgi markers and newly synthesized cargos, was produced. However, this structure did not acquire a normal Golgi architecture and was unable to ensure a normal trafficking activity. This suggests an integrative model for Golgi maintenance in interphase where the ER is able to autonomously produce Golgi-like structures that need pre-existing Golgi complexes to be organized as morphologically normal and active Golgi elements.


2021 ◽  
Author(s):  
Maxime Christie van Zwam ◽  
Willem Bosman ◽  
Wendy van Straaten ◽  
Suzanne Weijers ◽  
Emiel Seta ◽  
...  

Actin plays a central role in many biological processes such as cell division, motility and contractility. In birds and mammals, actin has six, highly conserved isoforms, four of which are primarily present in muscles and two that are ubiquitously expressed across tissues. While each isoform has non-redundant biological functions, we currently lack the tools to investigate the molecular basis for isoform specificity due to their high similarity and the limited possibilities to manipulate actin. To solve this technical challenge, we developed IntAct, an internally tagged actin system to study actin isoform organization in fixed and living cells. For this, we performed a microscopy-based screen for 11 internal actin positions and identified one residue pair that allows for non-disruptive epitope tag integration. Using knockin cell lines with tags into the ubiquitously expressed β-actin, we demonstrate that IntAct actins are properly expressed and that their incorporation into filaments is indistinguishable from wildtype. We further show that IntAct actins can be visualized in living cells by exploiting the nanobody-targeted ALFA tag and that they keep their ability to interact with the actin binding proteins profilin and cofilin. Lastly, we also introduced the tag in the ubiquitously expressed γ-actin and demonstrate that the differential localization observed for actin isoforms remains unaltered for the IntAct actins. Together, our data demonstrate that IntAct is a versatile tool to study actin isoform localization, dynamics and molecular interactions to finally enable the molecular characterization of actin isoforms in biological processes.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3317
Author(s):  
Eric Moeglin ◽  
Dominique Desplancq ◽  
Audrey Stoessel ◽  
Christian Massute ◽  
Jeremy Ranniger ◽  
...  

Histone H2AX phosphorylated at serine 139 (γ-H2AX) is a hallmark of DNA damage, signaling the presence of DNA double-strand breaks and global replication stress in mammalian cells. While γ-H2AX can be visualized with antibodies in fixed cells, its detection in living cells was so far not possible. Here, we used immune libraries and phage display to isolate nanobodies that specifically bind to γ-H2AX. We solved the crystal structure of the most soluble nanobody in complex with the phosphopeptide corresponding to the C-terminus of γ-H2AX and show the atomic constituents behind its specificity. We engineered a bivalent version of this nanobody and show that bivalency is essential to quantitatively visualize γ-H2AX in fixed drug-treated cells. After labelling with a chemical fluorophore, we were able to detect γ-H2AX in a single-step assay with the same sensitivity as with validated antibodies. Moreover, we produced fluorescent nanobody-dTomato fusion proteins and applied a transduction strategy to visualize with precision γ-H2AX foci present in intact living cells following drug treatment. Together, this novel tool allows performing fast screenings of genotoxic drugs and enables to study the dynamics of this particular chromatin modification in individual cancer cells under a variety of conditions.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2693
Author(s):  
Gabriella Schiera ◽  
Carlo Maria Di Liegro ◽  
Italia Di Liegro

The development and maturation of the mammalian brain are regulated by thyroid hormones (THs). Both hypothyroidism and hyperthyroidism cause serious anomalies in the organization and function of the nervous system. Most importantly, brain development is sensitive to TH supply well before the onset of the fetal thyroid function, and thus depends on the trans-placental transfer of maternal THs during pregnancy. Although the mechanism of action of THs mainly involves direct regulation of gene expression (genomic effects), mediated by nuclear receptors (THRs), it is now clear that THs can elicit cell responses also by binding to plasma membrane sites (non-genomic effects). Genomic and non-genomic effects of THs cooperate in modeling chromatin organization and function, thus controlling proliferation, maturation, and metabolism of the nervous system. However, the complex interplay of THs with their targets has also been suggested to impact cancer proliferation as well as metastatic processes. Herein, after discussing the general mechanisms of action of THs and their physiological effects on the nervous system, we will summarize a collection of data showing that thyroid hormone levels might influence cancer proliferation and invasion.


Sign in / Sign up

Export Citation Format

Share Document