Effects of Lunar Phases on Light-Trap Collections and Populations of Bollworm Moths12

1971 ◽  
Vol 64 (4) ◽  
pp. 860-864 ◽  
Author(s):  
Stanley J. Nemfc
Keyword(s):  
2021 ◽  
pp. 074873042098363
Author(s):  
Alejandro A. Aguirre ◽  
Roberto A. Palomares ◽  
Aitor D. De Ondiz ◽  
Eleazar R. Soto ◽  
Mariana S. Perea ◽  
...  

Evidence has accumulated over the years indicating that the moon influences some aspects of the reproductive activity in animals and humans. However, little is known about the influence of the lunar cycle on the reproductive performance of cows under tropical conditions, where the environment strongly affects reproduction. This retrospective study was conducted with the aim of assessing the influence of the lunar cycle on some reproductive traits of tropical crossbred cows managed in a pasture-based system. Data from 5869 reproductive records from two commercial farms localized in the Maracaibo Lake Basin of Zulia State, Venezuela, were analyzed. Variables studied were first service conception rate, calving frequency, first postpartum estrous frequency, and pregnancy frequency. In addition to the lunar cycle, the effects of farm, season, and predominant breed were also considered. Data were analyzed using logistic regression and general linear model from SAS. First service conception was affected by lunar phases and predominant breed, but not by farm or season. For frequencies of calving, first postpartum estrus, and pregnancy, there was no main effect of farm, season, and predominant breed, whereas the effect of lunar phases was highly significant. First service conception was significantly greater in waning than in crescent phase of the lunar cycle. Frequencies of calving, first estrus, and pregnancy were highly correlated and showed greater figures around full moon and new moon. In conclusion, lunar cycle influenced first service conception, attaining greater values in the waning phase of the moon cycle. Frequencies of calving, first postpartum estrus, and pregnancy in crossbred cows showed a clear bimodal rhythm, whose greatest values coincided with new moon and full moon.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sándor Kecskeméti ◽  
András Geösel ◽  
József Fail ◽  
Ádám Egri

AbstractCertain fungus gnats, like Lycoriella ingenua are notorious pests in agriculture, especially in mushroom production. While larvae cause mainly direct crop damage, adults are vectors of several dangerous fungal pathogens. To promote the development of pesticide-free management methods, such as light trapping, we measured the spectral sensitivity of L. ingenua compound eyes with electroretinography and performed two different behavioural experiments to reveal the wavelength dependence of phototaxis in this species. The spectral sensitivity of the compound eyes is bimodal with peaks at 370 nm (UV) and 526 nm (green). Behavioural experiments showed that attraction to light as a function of wavelength depends on light intensity. In our first experiment, where the minimal photon flux (105–109 photons/cm2/s) needed for eliciting a phototactic response was determined wavelength by wavelength, phototaxis was strongest in the green spectral range (~526 nm). In the other behavioural experiment, where wavelength preference was tested under a higher but constant light intensity (~1013 photons/cm2/s), the highest attraction was elicited by UV wavelengths (398 nm). Our results suggest that both UV and green are important spectral regions for L. ingenua thus we recommend to use both UV (~370-398 nm) and green (~526 nm) for trapping these insects.


Author(s):  
Timothy D McNamara ◽  
Thomas A O’Shea-Wheller ◽  
Nicholas DeLisi ◽  
Emily Dugas ◽  
Kevin A Caillouet ◽  
...  

Abstract West Nile virus (WNV) is the most prevalent arbovirus found throughout the United States. Surveillance of surface breeding Culex vectors involved in WNV transmission is primarily conducted using CDC Gravid traps. However, anecdotal claims from mosquito abatement districts in Louisiana assert that other trap types may be more suited to WNV surveillance. To test the validity of these assertions, we conducted a series of trapping trials and WNV surveillance over 3 yr to compare the efficacy of multiple trap types. First, we compared the CDC Gravid trap, CO2-baited New Standard Miniature Blacklight traps, and CO2-baited CDC light traps with either an incandescent light, a red light, or no light. We found that the CDC Gravid trap and CO2-baited no-light CDC Light trap collected the most mosquitoes. Second, we conducted additional, long-term trapping and WNV surveillance to compare these two trap types. We found that CO2-baited no-light CDC traps collected more of the local WNV vector, Culex quinquefasciatus (Say, Diptera, Culicidae), and detected WNV with greater sensitivity. Finally, we conducted trapping to compare the physiological states of Cx. quinquefasciatus and diversity of collected mosquitoes. CO2-baited no-light CDC light traps collected more unfed Cx. quinquefasciatus while Gravid traps collected more blooded Cx. quinquefasciatus; both traps collected the same number of gravid Cx. quinquefasciatus. Additionally, we found that CO2-baited no-light CDC light traps collected a larger diversity of mosquito species than Gravid traps.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 146
Author(s):  
Jordan Hoffman ◽  
Ilinca Ciubotariu ◽  
Limonty Simubali ◽  
Twig Mudenda ◽  
William Moss ◽  
...  

Despite dramatic reductions in malaria cases in the catchment area of Macha Hospital, Choma District, Southern Province in Zambia, prevalence has remained near 1–2% by RDT for the past several years. To investigate residual malaria transmission in the area, this study focuses on the relative abundance, foraging behavior, and phylogenetic relationships of Anopheles squamosus specimens. In 2011, higher than expected rates of anthropophily were observed among “zoophilic” An. squamosus, a species that had sporadically been found to contain Plasmodium falciparum sporozoites. The importance of An. squamosus in the region was reaffirmed in 2016 when P. falciparum sporozoites were detected in numerous An. squamosus specimens. This study analyzed Centers for Disease Control (CDC) light trap collections of adult mosquitoes from two collection schemes: one performed as part of a reactive-test-and-treat program and the second performed along a geographical transect. Morphological identification, molecular verification of anopheline species, and blood meal source were determined on individual samples. Data from these collections supported earlier studies demonstrating An. squamosus to be primarily exophagic and zoophilic, allowing them to evade current control measures. The phylogenetic relationships generated from the specimens in this study illustrate the existence of well supported clade structure among An. squamosus specimens, which further emphasizes the importance of molecular identification of vectors. The primarily exophagic behavior of An. squamosus in these collections also highlights that indoor vector control strategies will not be sufficient for elimination of malaria in southern Zambia.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 343
Author(s):  
Kim Bjerge ◽  
Jakob Bonde Nielsen ◽  
Martin Videbæk Sepstrup ◽  
Flemming Helsing-Nielsen ◽  
Toke Thomas Høye

Insect monitoring methods are typically very time-consuming and involve substantial investment in species identification following manual trapping in the field. Insect traps are often only serviced weekly, resulting in low temporal resolution of the monitoring data, which hampers the ecological interpretation. This paper presents a portable computer vision system capable of attracting and detecting live insects. More specifically, the paper proposes detection and classification of species by recording images of live individuals attracted to a light trap. An Automated Moth Trap (AMT) with multiple light sources and a camera was designed to attract and monitor live insects during twilight and night hours. A computer vision algorithm referred to as Moth Classification and Counting (MCC), based on deep learning analysis of the captured images, tracked and counted the number of insects and identified moth species. Observations over 48 nights resulted in the capture of more than 250,000 images with an average of 5675 images per night. A customized convolutional neural network was trained on 2000 labeled images of live moths represented by eight different classes, achieving a high validation F1-score of 0.93. The algorithm measured an average classification and tracking F1-score of 0.71 and a tracking detection rate of 0.79. Overall, the proposed computer vision system and algorithm showed promising results as a low-cost solution for non-destructive and automatic monitoring of moths.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa Robitzch ◽  
Victor Molina-Valdivia ◽  
Jaiber J. Solano-Iguaran ◽  
Mauricio F. Landaeta ◽  
Michael L. Berumen

AbstractVery little is known about the ecology and biology of the smallest marine vertebrates, fishes in the genus Schindleria. Even though over half of named Schindleria species have been identified in the Red Sea, the collection of only very few specimens has been documented. Here, we assessed abundance patterns of nearly two thousand Red Sea long dorsal fin (LDF) adults and found evidence for putative seasonal and spatial differences, likely related to differing habitat and environmental conditions. The highest abundances were outside local seasonal temperature extremes and decoupled from peaks of coral reef fish recruitment. We also found evidence for global trends in abundances related to lunar cycles using our Red Sea data and that from a recently published large collection of specimens from the DANA Expedition (1928–1930). The abundance of adult LDF Schindleria in relation to lunar phases differed significantly, with most Schindleria caught outside the full moon, and mostly during the new moon in the Red Sea and the 3rd quarter moon in the DANA collection. We further suggest that the abundances of Schindleria at coral reefs may be related to reproductive cycles and that these cycles may be timed with the moon as back-calculations of hatch dates from otoliths from the Red Sea significantly resulted after the new moon, making Schindleria the fastest-lived coral reef fish with the shortest generation times. Schindleria could be the most numerous coral reef fish in the world, for which we encourage increased research.


1987 ◽  
Vol 1 (2) ◽  
pp. 215-218 ◽  
Author(s):  
L. R. BOOBAR ◽  
M. R. SARDELIS ◽  
J. H. NELSON ◽  
W. M. BROWN
Keyword(s):  

Author(s):  
Laura L. Stahly ◽  
Gerald H. Krockover ◽  
Daniel P. Shepardson

Sign in / Sign up

Export Citation Format

Share Document