scholarly journals Octabor (boron) as a Low Toxicity Control Tactic for the Spotted Wing Drosophila, Drosophila suzukii (Matsumura)

2018 ◽  
Vol 5 (4) ◽  
pp. 63
Author(s):  
Troy Cloutier ◽  
Francis Andrew Drummond ◽  
Judith Collins

The recently introduced spotted wing drosophila is one of the most serious pests in small fruit production in the United States and Europe. Most control relies upon multiple applications of synthetic insecticides. In an effort to find less-toxic insecticides to consumers, farm workers, and wildlife, we conducted two laboratory trials and a semi-field trial in order to assess the potential for disodium octaborate tetrahydrateformulated and sold as Octabor®(U.S. Borax, Inc.) as a control for spotted wing drosophila in wild blueberry. We found that Octabor at 0.6 and 1.0% (w/v) applied to wild blueberry fruit resulted in higher mortality of flies than non-treated control fruit. Addition of sugar to Octabor enhanced mortality in one of the two trials, with an interaction between sugar addition and Octabor rate suggesting that the addition of sugar provided the greatest enhancement at the low rate. Our semi-field study showed that an apparent repellency effect of Octabor provided protection of fruit from infestation for up to 3 days. Also in the semi-field study, we observed a delayed effect on fly mortality. Increased fly mortality occurred over time, relative to the non-treated control fruit. The greatest fly mortality, relative to the non-treated control, resulted from flies being exposed to fruit treated 3 and 7 days prior to fly exposure, but not immediately after the treatment of Octabor. We speculate on why this type of delay in mortality might have occurred.    

2020 ◽  
Vol 113 (3) ◽  
pp. 1262-1269 ◽  
Author(s):  
D Adeline Yeh ◽  
Francis A Drummond ◽  
Miguel I Gómez ◽  
Xiaoli Fan

Abstract Drosophila suzukii (Matsumura), or spotted wing drosophila, has become a major pest concern for berry growers in the United States. In this study, we evaluated the economic impacts of D. suzukii on the Maine wild blueberry industry from two perspectives. The first analysis estimated the state-level economic impacts of D. suzukii on the wild blueberry industry in Maine in the absence of control. We found that D. suzukii could result in drastic revenue losses to the industry, which could be over $6.8 million under the worst-case scenario (assuming a 30% yield reduction). In the second analysis, we used Monte Carlo simulation to compare the expected revenues under different management strategies for a typical wild blueberry farm in Maine. The analysis focused on a decision-making week during the harvesting season, which the grower can choose in between three control strategies: no-control, early harvest, or insecticide application. The results suggested that insecticide applications are not economically optimal in most low infestation risk scenarios. Furthermore, although the early harvest strategy is one of the strategies to avoid D. suzukii infestations for wild blueberry production in Maine, the tradeoff is the revenue loss from the unripe crop. Using the simulation results, we summarized optimal harvest timing regarding the fruit maturity level under different D. suzukii infestation risk scenarios, which can minimize the revenue loss from adopting the early harvest management strategy.


2019 ◽  
Vol 49 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Holly Hooper ◽  
Matthew J Grieshop

Abstract The arrival of spotted wing Drosophila, Drosophila suzukii (Matsumura), to the United States has caused many berry and cherry growers to replace IPM programs with calendar-based broad-spectrum insecticide programs. Alternative management tactics are urgently needed to mitigate the current dependency on chemical control. Postharvest burial is a cultural crop sanitation strategy that has the potential to reduce D. suzukii reproductive habitat and eliminate infested fruit wastes. This study revealed that D. suzukii rarely pupate on the soil’s surface or below 1 cm, but are capable of unburying themselves from depths up to 48 cm. Although zero emergence was not obtained in the field, adult emergence decreased exponentially with deeper burial depths. A burial depth of 24 cm reduced D. suzukii emergence by 97%, although soil texture may influence this optimal burial depth. Soils that had a higher concentration of sand had a negative impact on D. suzukii survival at shallower burial depths. The mechanism behind the reduction in adult emergence from differing burial depths remains unclear as the lipid concentration between emerging D. suzukii was the same regardless of burial depth.


2009 ◽  
Vol 19 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Kathleen Demchak

High tunnels are a relatively economical form of protected culture, and offer cultural advantages such as protection from the elements and an extended production season. Interest in high tunnels for small fruit production has been increasing in North America. Growers in the United States and Canada are using multi-bay and single-bay high tunnels for production of red raspberry (Rubus idaeus), black raspberry (Rubus occidentalis), blackberry (Rubus subgenus Rubus), strawberry (Fragaria ×ananassa), and blueberry (Vaccinium spp.). Research trials using high tunnels are being conducted in numerous places across the United States. In most instances, high tunnels increased yields of berry crops, improved quality, and decreased the incidence of most diseases compared with field production, powdery mildew (Sphaerotheca macularis) being a notable exception. The insect and mite complex encountered in tunnels when growing berry crops has changed markedly, often becoming similar to that which might have been expected in greenhouses, with numbers of two-spotted spider mite (Tetranychus urticae), whitefly (Aleyrodidae), and thrips (Frankliniella spp.) reaching high levels without control measures. In studies at The Pennsylvania State University, primocane-bearing cultivars of red raspberry plants produced at least two to three times as much marketable fruit in tunnels as in a previous field study, with substantial summer and fall crops obtained. ‘Triple Crown’ thornless blackberry produced very high marketable yields in the tunnels, even though winter injury historically resulted in a lack of blackberry production in the field. Strawberry production in a plasticulture system using short-day or day-neutral cultivars was found to be viable; however, the primary benefit of high tunnels for strawberry may have been reliability of production rather than a yield increase. Potential reasons for improvements in productivity and quality are numerous and warrant further attention.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3192 ◽  
Author(s):  
Aaron B. Langille ◽  
Ellen M. Arteca ◽  
Jonathan A. Newman

D. suzukiiis a relatively recent and destructive pest species to the North American soft-skinned fruit industry. Understanding this species’ potential to shift in abundance and range due to changing climate is an important part of an effective mitigation and management strategy. We parameterized a temperature-drivenD. suzukiipopulation dynamics model using temperature data derived from several Global Circulation Models (CMIP5) with a range of relative concentration pathway (RCP) predictions. Mean consensus between the models suggest that without adaptation to both higher prolonged temperatures and higher short-term temperature eventsD. suzukiipopulation levels are likely to drop in currently higher-risk regions. The potential drop in population is evident both as time progresses and as the severity of the RCP scenario increases. Some regions, particularly in northern latitudes, may experience increased populations due to milder winter and more developmentally-ideal summer conditions, but many of these regions are not currently known for soft-skinned fruit production and so the effects of this population increase may not have a significant impact.


2019 ◽  
Vol 112 (5) ◽  
pp. 2287-2294 ◽  
Author(s):  
Dominique N Ebbenga ◽  
Eric C Burkness ◽  
William D Hutchison

Abstract Spotted-wing drosophila, Drosophila suzukii (Matsumura), an economically damaging invasive species of numerous fruit crops, was first detected in Minnesota in 2012. High fecundity, and short generation times facilitated a rapid rise in the global pest status of D. suzukii, particularly in North America and Europe. To date, the majority of crop injury research has focused on fruit crops such as blueberries, raspberries, and cherries. However, little is known regarding the impact of D. suzukii on the wine grape industry in the upper Midwest region of the United States. Field trials were conducted in Minnesota during the summers of 2017–2018 to examine season-long phenology of D. suzukii in wine grape vineyards and wineries, and to assess the efficacy of exclusion netting for control of D. suzukii. Four treatments were evaluated, 1) open plot check (control), 2) open plot treated with an insecticide, 3) exclusion netting, and 4) exclusion netting, with artificial infestations of D. suzukii adults. Exclusion netting was applied at véraison and removed at harvest. On each sample date, 20 berries (10 intact and 10 injured) were collected from each plot for dissection. The number of larvae and adults were recorded for each berry to determine infestation levels. As shown by mean larval infestations and injured berries across treatments, exclusion netting provided a significant reduction in the level of D. suzukii infested berries when compared with the untreated check. These results indicate that exclusion netting could provide an effective alternative management strategy for D. suzukii in wine grapes.


Entomologia ◽  
2013 ◽  
Vol 1 (1) ◽  
Author(s):  
M.V. Rossi Stacconi ◽  
A. Grassi ◽  
D.T. Dalton ◽  
B. Miller ◽  
M. Ouantar ◽  
...  

2015 ◽  
Vol 30 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Sanja Radonjic ◽  
Snjezana Hrncic

The spotted wing drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae) is an invasive pest originating from Southeast Asia. It was detected for the first time in Europe in 2008 (Spain and Italy) and subsequently in other European countries. It is a highly polyphagous pest that infests healthy, ripening fruit and presents a serious threat to fruit production, particularly of soft skinned fruit. In the first half of October 2013, a new fruit fly species was unexpectedly detected in Tephri traps baited with the three-component female-biased attractant BioLure that is regularly used for monitoring the Mediterranean fruit fly Ceratitis capitata Wiedem. (Diptera: Tephritidae) in Montenegro. Brief visual inspection identified the new species as the spotted wing drosophila D. suzukii. The pest was first recorded in several localities on the Montenegrin seacoast around Boka Kotor Bay. After the finding, all Drosophila specimens were collected from traps for further laboratory observation. A quick follow-up monitoring of other Tephri traps was carried out within the next few days on the rest of the seacoast (localities from Tivat to Ulcinj). Additionally, Tephri traps were set up around Lake Skadar and in the city of Podgorica, as well as on fresh fruit markets in Podgorica. The results of this preliminary study showed that D. suzukii was present in all surveyed locations and adults were captured until late December. Both sexes were found in traps with BioLure. Our data show that D. suzukii is present in southern parts of Montenegro and there is a serious threat of its further spreading, particularly towards northern parts of the country where the main raspberry and blueberry production is placed. The results also show that Tephri traps baited with BioLure can be used for detection and monitoring of spotted wing drosophila.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Torsten Schöneberg ◽  
Margaret T. Lewis ◽  
Hannah J. Burrack ◽  
Matthew Grieshop ◽  
Rufus Isaacs ◽  
...  

Spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly of Asian origin, has emerged as a devastating pest of small and stone fruits throughout the United States. Tolerance for larvae is extremely low in fresh market fruit, and management is primarily achieved through repeated applications of broad-spectrum insecticides. These applications are neither economically nor environmentally sustainable, and can limit markets due to insecticide residue restrictions, cause outbreaks of secondary pests, and select for insecticide resistance. Sustainable integrated pest management programs include cultural control tactics and various nonchemical approaches for reducing pest populations that may be useful for managing D. suzukii. This review describes the current state of knowledge and implementation for different cultural controls including preventative tactics such as crop selection and exclusion as well as strategies to reduce habitat favorability (pruning; mulching; irrigation), alter resource availability (harvest frequency; sanitation), and lower suitability of fruit postharvest (cooling; irradiation). Because climate, horticultural practices, crop, and market underlie the efficacy, feasibility, and affordability of cultural control tactics, the potential of these tactics for D. suzukii management is discussed across different production systems.


2017 ◽  
Vol 32 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Catherine Baroffio ◽  
Mélanie Dorsaz ◽  
Fabio Kuonen

Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae), the spotted wing Drosophila (SWD) is a concern for small fruit and stone fruit growers. This invasive pest lays eggs in healthy fruits with a serrated ovipositor, resulting in considerable economic losses, mainly in berry crops. In Europe, it was first recorded in Switzerland in 2011, causing considerable damage in all small fruit crops, especially in later-developing crops (autumn raspberries, blackberries, blueberries and elderberries). The pest was found in all regions of the country, from low altitudes to the timberline. The range of host plants is very broad, not only affecting crops, but also wild fruits. Switzerland has implemented a strategy at the national level by combining an effective monitoring system with hygiene measures and mass trapping. Insecticide applications, usually based on spinosyns, are only considered as a last resort. In addition to this already operative strategy, innovative alternatives are considered, in particular the use of repellents or masking substances.


Sign in / Sign up

Export Citation Format

Share Document