scholarly journals Protecting against water loss: analysis of the barrier properties of plant cuticles

2001 ◽  
Vol 52 (363) ◽  
pp. 2023-2032 ◽  
Author(s):  
Markus Riederer ◽  
Lukas Schreiber
2014 ◽  
Vol XXXI (61 (4/14)) ◽  
pp. 193-201 ◽  
Author(s):  
Andrzej Studziński ◽  
◽  
Katarzyna Pietrucha - Urbanik ◽  
Artur Mędlara

2019 ◽  
Vol 40 (7) ◽  
pp. 827-840 ◽  
Author(s):  
Amauri Bueno ◽  
Domingo Sancho-Knapik ◽  
Eustaquio Gil-Pelegrín ◽  
Jana Leide ◽  
José Javier Peguero-Pina ◽  
...  

Abstract Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs—the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Klaus J. Lendzian ◽  
Andreas Beck

AbstractThe permeability of intact fungal fruit body skins (pileipelles) with respect to water and oxygen was determined for the first time. Methods that have been successfully applied to plant surfaces were used to study isolated pileipelles. Mechanically isolated skins from five genera of Basidiomycota (species of Amanita, Russula, Stropharia, Tapinella, and Tricholomopsis) were mounted between two compartments simulating the inner (fruit body) and the outer (aerial) space. Fluxes of water and oxygen across the skins were measured. Water loss via intact skins differed markedly from evaporation of water from a water surface. The skins reduced water loss by factors of 10 to 30, with permeability ranging from 2.8 to 9.8 × 10−4 ms−1. Oxygen permeability was much lower and ranged from 0.8 to 6.0 × 10−6 ms−1. Chloroform-extractable substances play a minor, but significant role as transport barrier during water permeance. Water and oxygen permeability were dependent on the humidity in the aerial compartment. Higher humidity in the air increased permeability and the hydration/water content of the skins. The ecological implications include impacts to fungal growth, sporulation and spore release.


Author(s):  
S. N. Jones ◽  
G. M. Sapers ◽  
F. W. Douglas ◽  
T. O. Dobson Eastern

Strategies to improve marketability of small fruits include the identification of characteristics that contribute to longer shelf life. One characteristic of a durable berry is that it retains moisture after harvest and resists desiccation. In our study of 10 thornless blackberry cultivars and selections during refrigerated storage, weight loss varied from 1% to 3% per day and rates were linear for 10 days. Fluid leakage was not a factor, and the primary source of weight loss was concluded to be transpiration. Microscopy was performed to identify structural correlates of berry weight loss. Surface wax on plant structures is known to be a barrier to water loss.Representative berries from the hand-selected fruits, sorted for weight loss analysis, were processed for microscopy 24-36 hr after harvest, during which time the fruits were held at 0-1 C. Samples were fixed with glutaraldehyde and osmium tetroxide, dehydrated with an acetone series, and embedded in Spurr's resin.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guiping Cheng ◽  
Ling Wang ◽  
Hairong Wu ◽  
Xinfan Yu ◽  
Nan Zhang ◽  
...  

The vase life of cut flowers is largely affected by post-harvest water loss. Cuticular wax is the primary barrier to uncontrolled water loss for aerial plant organs. Studies on leaf cuticular transpiration have been widely conducted; however, little is known about cuticular transpiration in flowers. Here, the cuticular transpiration rate and wax composition of three lily cultivars were determined. The minimum water conductance of tepal cuticles was higher at the green bud than open flower stage. Lily cuticular transpiration exhibited cultivar- and organ-specific differences, where transpiration from the tepals was higher than leaves and was higher in the ‘Huang Tianba’ than ‘Tiber’ cultivar. The overall wax coverage of the tepals was higher compared to that of the leaves. Very-long-chain aliphatics were the main wax constituents and were dominated by n-alkanes with carbon (C) chain lengths of C27 and C29, and C29 and C31 in the tepal and leaf waxes, respectively. Primary alcohols and fatty acids as well as small amounts of alkyl esters, ketones, and branched or unsaturated n-alkanes were also detected in both tepal and leaf waxes, depending on the cultivar and organ. In addition, the chain-length distributions were similar between compound classes within cultivars, whereas the predominant C-chain lengths were substantially different between organs. This suggests that the less effective transpiration barrier provided by the tepal waxes may result from the shorter C-chain aliphatics in the tepal cuticle, compared to those in the leaf cuticle. These findings provide further insights to support the exploration of potential techniques for extending the shelf life of cut flowers based on cuticular transpiration barrier properties.


2019 ◽  
Author(s):  
Amauri Bueno ◽  
Domingo Sancho-Knapik ◽  
Eustaquio Gil-Pelegrín ◽  
Jana Leide ◽  
José Javier Peguero-Pina ◽  
...  

Abstract Plants prevent uncontrolled water loss by synthesizing, depositing and maintaining a hydrophobic layer over their primary aerial organs—the plant cuticle. Quercus coccifera L. can plastically respond to environmental conditions at the cuticular level. When exposed to hot summer conditions with high vapour-pressure deficit (VPD) and intense solar radiation (Mediterranean atmospheric conditions; MED), this plant species accumulates leaf cuticular waxes even over the stomata, thereby decreasing transpirational water loss. However, under mild summer conditions with moderate VPD and regular solar radiation (temperate atmospheric conditions; TEM), this effect is sharply reduced. Despite the ecophysiological importance of the cuticular waxes of Q. coccifera, the wax composition and its contribution to avoiding uncontrolled dehydration remain unknown. Thus, we determined several leaf traits for plants exposed to both MED and TEM conditions. Further, we qualitatively and quantitatively investigated the cuticular lipid composition by gas chromatography. Finally, we measured the minimum leaf conductance (gmin) as an indicator of the efficacy of the cuticular transpiration barrier. The MED leaves were smaller, stiffer and contained a higher load of cuticular lipids than TEM leaves. The amounts of leaf cutin and cuticular waxes of MED plants were 1.4 times and 2.6 times higher than that found for TEM plants, respectively. In detail, MED plants produced higher amounts of all compound classes of cuticular waxes, except for the equivalence of alkanoic acids. Although MED leaves contained higher cutin and cuticular wax loads, the gmin was not different between the two habitats. Our findings suggest that the qualitative accumulation of equivalent cuticular waxes might compensate for the higher wax amount of MED plants, thereby contributing equally to the efficacy of the cuticular transpirational barrier of Q. coccifera. In conclusion, we showed that atmospheric conditions profoundly affect the cuticular lipid composition of Q. coccifera leaves, but do not alter its transpiration barrier properties.


Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 203 ◽  
Author(s):  
Tugce Senturk Parreidt ◽  
Martina Lindner ◽  
Isabell Rothkopf ◽  
Markus Schmid ◽  
Kajetan Müller

Water loss, gain or transfer results in a decline in the overall quality of food. The aim of this study was to form a uniform layer of sodium alginate-based edible coating (1.25% sodium alginate, 2% glycerol, 0.2% sunflower oil, 1% span 80, 0.2% tween 80, (w/w)) and investigate the effects on the water barrier characteristics of fresh-cut cantaloupe and strawberries. To this end, a uniform and continuous edible film formation was achieved (0.187 ± 0.076 mm and 0.235 ± 0.077 mm for cantaloupe and strawberries, respectively) with an additional immersion step into a calcium solution at the very beginning of the coating process. The coating application was effective in significantly reducing the water loss (%) of the cantaloupe pieces. However, no significant effect was observed in water vapor resistance results and weight change measurements in a climate chamber (80%→60% relative humidity (RH) at 10 °C). External packaging conditions (i.e., closed, perforated, and open) were not significantly effective on water activity (aw) values of cantaloupe, but were effective for strawberry values. In general, the coating application promoted the water loss of strawberry samples. Additionally, the water vapor transmission rate of stand-alone films was determined (2131 g·100 µm/(m2·d·bar) under constant environmental conditions (23 °C, 100%→50% RH) due to the ability to also evaluate the efficacy in ideal conditions.


Sign in / Sign up

Export Citation Format

Share Document