Involvement of Follicular Patency in the Ovarian Developmental Block in Virus-infected, MdSGHV, House Flies, Musca domestica (Diptera: Muscidae)

Author(s):  
Shawheen Fagan ◽  
Arianna Ramirez ◽  
Sara Serdy ◽  
John G Stoffolano

Abstract The Musca domestica salivary gland hypertrophy virus (MdSGHV) is known to have marked effects on the female Musca domestica L. (or common house fly) reproductive system, particularly regarding the size and functionality of the ovaries. Examination of the terminal ovarian follicles can help determine if and how MdSGHV mechanistically causes the block in ovarian development. In this study, terminal ovarian follicle lengths were measured and monitored for patency using Trypan blue dye staining. We examined the effect of MdSGHV infection on female house fly ovarian follicles and attempted to rescue the diminished ovarian follicles in MdSGHV-infected house flies through the application of a hormonal treatment (i.e., methoprene). Comparison of patency in control saline-injected females, virus-injected females with no methoprene application, and virus-injected females with topical methoprene application revealed that none of the virus-infected flies showed an increase in terminal follicular length beyond stage 3 follicles (staging according to Adams 1974). Additionally, none showed evidence of patency. In control, saline-injected females, we found the threshold length of the terminal follicles for the onset of patency to be 600 µm. When examined at 48, 72, and 96 h post-eclosion, average follicle length for infected females seldom reached 250 µm and they also failed to display patency. Thus, the virus is somehow involved in shutting down the mechanism involved in follicular patency. The lack of patency in infected follicles may also be one of the determining factors preventing vertical transmission of the pathogen.

2015 ◽  
Vol 5 (3) ◽  
pp. 371-384 ◽  
Author(s):  
Ronda L Hamm ◽  
Richard P Meisel ◽  
Jeffrey G Scott

Abstract Sex determination is one of the most rapidly evolving developmental pathways, but the factors responsible for this fast evolution are not well resolved. The house fly, Musca domestica, is an ideal model for studying sex determination because house fly sex determination is polygenic and varies considerably between populations. Male house flies possess a male-determining locus, the M factor, which can be located on the Y or X chromosome or any of the five autosomes. There can be a single M or multiple M factors present in an individual male, in heterozygous or homozygous condition. Males with multiple copies of M skew the sex ratio toward the production of males. Potentially in response to these male-biased sex ratios, an allele of the gene transformer, Md-traD, promotes female development in the presence of one or multiple M factors. There have been many studies to determine the linkage and frequency of these male determining factors and the frequency of Md-traD chromosomes in populations from around the world. This review provides a summary of the information available to date regarding the patterns of distribution of autosomal, X-linked and Y-linked M factors, the relative frequencies of the linkage of M, the changes in frequencies found in field populations, and the fitness of males with autosomal M factors vs. Y-linked M. We evaluate this natural variation in the house fly sex determination pathway in light of models of the evolution of sex determination.


Author(s):  
Suzanna Rachimi ◽  
John P Burand ◽  
Chris Geden ◽  
John G Stoffolano

Abstract The Musca domestica salivary gland hypertrophy virus (MdSGHV) substantially enlarges the house fly’s salivary glands and prevents or delays ovarian development in its adult host, but the effect that MdSGHV has on the house fly’s food consumption is currently unknown. Using house flies from a laboratory-reared colony, we evaluated the effect of MdSGHV infection on food consumption over a 7-d period. Both treatment (virus-infected) and control (saline-injected) flies were provided with a choice of 8% sucrose solution and 4% powdered milk solution to determine food preferences. Quantities of each solution consumed were measured every 24 h for each fly to measure food consumptions. Infected house flies were shown to consume less overall of both solutions than house flies injected with saline. The largest consumption discrepancy was seen between female house flies. Healthy female flies with developing ovaries continued to consume a sugar and protein diet, whereas infected female flies fed predominantly on a sugar diet. Additionally, infected male and female flies consumed significantly lower quantities of protein and sucrose than control flies. This suggests that MdSGHV has a negative consumption effect (e.g., hunger, starvation) on its host. Thus, differences in food consumption of infected and control flies probably represent differences in the nutritional requirements of flies resulting from viral infection.


1973 ◽  
Vol 105 (5) ◽  
pp. 709-718 ◽  
Author(s):  
H. G. Wylie

AbstractFemales of Nasonia vitripennis (Walk.) lay a smaller percentage of fertilized (i.e. female) eggs on house fly, Musca domestica L., pupae previously parasitized by their own species, by Muscidifurax zaraptor K. & L., or by Spalangia cameroni Perk. (Hymenoptera: Pteromalidae) than on unparasitized hosts. They respond to changes in the fly pupae associated with death, and in the case of house flies attacked by N. vitripennis, to "venoms" injected at that time or to changes unrelated to death. By not fertilizing eggs that they lay on attacked hosts, the females also conserve sperm, for immature N. vitripennis on previously-attacked fly pupae are usually killed by parasite larvae already present.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249496
Author(s):  
Saad M. Alzahrani

This study was conducted to determine the susceptibility and resistance of some house fly strains of Musca domestica L. to the insect growth regulator insecticides triflumuron and pyriproxyfen in some locations in Riyadh city. Field-collected strains of M. domestica L. from five sites in Riyadh city that represented five slaughterhouse sites where flies spread significantly were tested against triflumuron and pyriproxyfen. Triflumuron LC50 values for the five collected strains ranged from 2.6 to 5.5 ppm, and the resistance factors (RFs) ranged from 13-fold to 27-fold that of the susceptible laboratory strain. Pyriproxyfen LC50 values for the field strains ranged from 0.9 to 1.8 ppm with RFs of 3-fold to 5-fold. These results indicate that pyriproxyfen is an effective insecticide to control house flies and should be used in rotation with other insecticides in the control programs applied by Riyadh municipality.


2018 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Suriyani Tan ◽  
Machrumnizar Machrumnizar

Muscadomestica (house fly) is an insect that is considered useless by humans although they lived very close to humans. Breeding site of flies in human or animal waste, the rubbish, or unorganic objects that have decayed greatly support their role as mechanical vectors. More than 20 species of flies have been reported as an agent of gastrointestinal diseases. The purpose of this study is to examnine the role of houseflies as mechanical vectors Ascarislumbricoides’seggs.The research sample was 500 house flies (Muscadomestica) captured in the Legok area. Houseflies were trapped by fly trap containing rotten fish meat and then stored at a temperature of 4 degree celcius. The samples were divided into six groups according to the sampling areas, crushed and checked directly by using a light microscope. Ascarislumbricoides eggs are not found in all groups of samples. The study concluded that Muscadomestica is not a mechanical vector of infective eggs of Ascarislumbricoides in Tangerang City, Banten Province.


1985 ◽  
Vol 75 (1) ◽  
pp. 143-158 ◽  
Author(s):  
I. Denholm ◽  
R. M. Sawicki ◽  
A. W. Farnham

AbstractWays in which the bionomics and dynamics of populations of Musca domestica L. can influence the development of insecticide resistance, and how resistance genes spread within and between farms was investigated in a three-year study of the biology and movement of flies on 63 pig-rearing farms in south-eastern England. House-flies survived winter only on 12 ‘overwintering’ farms where they bred in heated pig-rearing houses (‘closed buildings’) throughout the year. In late spring they appeared out doors, and their descendents founded populations on neighbouring ‘summer’ farms where pigs breed only in unheated (‘open’) buildings. There, flies reached peak numbers in August–September and died out by mid-November. Gene flow within and between farms was studied indirectly by mark-release-recapture of colour-marked adults, and directly by monitoring the diffusion of the visible marker gene bwb (brown body) introduced into indigenous house-fly populations. Although movement between open buildings within a farm was unrestricted, dispersal between farms was limited, and gene flow between even adjacent closed buildings was indirect, and required more than one generation. Likewise, indirect and gradual gene flow during summer probably accounted for the similarity in type and frequency of other independent genetic markers of local overwintering populations. Thus closed buildings played a key role in house-fly ecology and population genetics. Unfortunately, control with persistent insecticides in these buildings ensures efficient resistance selection, ultimately resulting in its spread to all pig farms. Less selective control practices are needed at these sites.


Insects ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 47 ◽  
Author(s):  
Dalton Baker ◽  
Steven Rice ◽  
Diana Leemon ◽  
Rosamond Godwin ◽  
Peter James

The control of house flies, Musca domestica (L.), currently relies on the use of chemical insecticide spray and bait formulations. Entomopathogenic fungi, such as Metarhizium anisopliae, may provide an alternative to these products. This study aimed to develop and evaluate a mycoinsecticide bait formulation containing a virulent M. anisopliae isolate. Five M. anisopliae isolates were screened against M. domestica and isolate M16 was selected for bait development. Bait formulations containing a variety of additives, including (Z)-9-tricosene, were tested for their ability to increase fly visitation. A bait formulation containing M. anisopliae and skim milk powder was found to have the highest house fly visitation and was subsequently compared to a conventional chemical bait in an efficacy assay. The chemical bait (0.5% imidacloprid) caused faster mortality than the mycoinsecticide bait, however, similar levels of mortality were achieved by 4–5 days’ post exposure. These results suggest that M. anisopliae mycoinsecticide baits may offer an alternative to conventional chemical insecticides for the control of house flies in suitable areas.


1948 ◽  
Vol 39 (3) ◽  
pp. 339-357 ◽  
Author(s):  
Sonti Dakshinamurty

The study of the common house-fly,Musca domestica, L., has not received the attention it merits by medical entomologists. Although the correlation betweenfly-borne diseasesandclimatic factorshas interested several workers, this correlation has not been satisfactorily explained. An investigation of the influence ofclimatic factorson house-flies was therefore undertaken.House-flies can be reared in the laboratory by a proper choice of the breeding medium and suitable technique. Manures, kitchen refuse and synthetic media may be used but the last mentioned is recommended for the production of a supply of standard insects.M. domesticachooses the lower humidity on each of the humidity gradients, 20–40, 40–60, 60–80 and 80–100 per cent., at a constant temperature of 25°C. The choice is significant for both sexes, and for dry and wet flies, except for dry flies at the range 60–80 per cent.The house-fly chooses 30°C. in temperature gradients of 20–30°C. and 30–40°C. at constant humidity, expressed either in the R.H. or the S.D. scale. It chooses 30°C. with dry air if possible, but with moist air if it must. In a gradient of 33–27°C. where dry air is associated with 33°C. in the S.D. scale in the one case, and 27°C. in the R.H. in the other, it chooses 33°C. or 27°C. according as it coincides with dry air. Dry air as represented by low R.H. or high S.D. did not make any difference to its choice, consequently it is not possible to decide whether house-flies choose by the R.H. scale or the S.D. scale. The activity ofM. domesticato different combinations of temperature and humidity shows maximum activity with high temperature and low humidity, minimum with high temperature and high humidity; while in the case of low temperature combinations with either high or low humidity, activity lies intermediate in degree. High and low temperatures and high and low humidity within themselves also show significant results by the χ2test.The experimental results are explained on physiological grounds and the results obtained in these experiments are compared with those of other workers on similar problems on a variety of insects.The general experience with regard to house-flies in the field is explained in the light of these laboratory findings.For a correct analysis of the behaviour of the house-fly in nature, biological stimuli such as feeding, breeding and resting habits must be considered quantitatively in relation to environmental factors such as temperature, humidity, rainfall and light. The present work forms part of such a study.


2020 ◽  
Vol 24 (3) ◽  
pp. 519-523
Author(s):  
O.J. Soyelu ◽  
B.A. Oluwamakinde ◽  
R.E. Okonji

Insecticidal activities of hexane extracts of leaves and roots of siam weed and vetiver, and roots of neem were assessed against house fly, Musca domestica L. Mortality test was conducted using serial concentrations 20%, 10%, 5% and 2.5% of extracted oils while behavioural orientation of house fly to oil odour, antioviposition effect of oil toward the insects, biochemical reactions in treated flies and fitness of offspring were determined using 20% oil concentration. House fly mortality varied significantly with plant species and part of plant extracted (P < 0.001), concentration applied (P < 0.001) and time post-exposure (P < 0.001). All tested plant extracts showed potential as good control agents with average mortality ranging from 59-74%. However, significantly lower median lethal values (LC50 and LT50) separated vetiver as the most toxic plant against the insect pest. The plant oils repelled house flies (93-100%), reduced the number of larvae that hatched from laid eggs, lowered adult emergence and caused a significant reduction in size and weight of offspring. On the contrary, exposure to plant oils did not alter offspring sex ratio. In comparison to untreated house flies, plant oils induced biochemical stress in poisoned cohorts as evidenced in significant deviation of digestive enzyme (α- and β- amylases, lipase) activity and concentrations of detoxifying enzyme (glutathione-Stransferase), neurochemical enzyme (acetylcholinesterase) and energy metabolism biomolecules (total protein). Implications of obtained results for non-chemical control strategies are discussed.


Sign in / Sign up

Export Citation Format

Share Document