scholarly journals Spot and Cumulative Urine Samples Are Suitable Replacements for 24-Hour Urine Collections for Objective Measures of Dietary Exposure in Adults Using Metabolite Biomarkers

2019 ◽  
Vol 149 (10) ◽  
pp. 1692-1700 ◽  
Author(s):  
Thomas Wilson ◽  
Isabel Garcia-Perez ◽  
Joram M Posma ◽  
Amanda J Lloyd ◽  
Edward S Chambers ◽  
...  

ABSTRACT Background Measurement of multiple food intake exposure biomarkers in urine may offer an objective method for monitoring diet. The potential of spot and cumulative urine samples that have reduced burden on participants as replacements for 24-h urine collections has not been evaluated. Objective The aim of this study was to determine the utility of spot and cumulative urine samples for classifying the metabolic profiles of people according to dietary intake when compared with 24-h urine collections in a controlled dietary intervention study. Methods Nineteen healthy individuals (10 male, 9 female, aged 21–65 y, BMI 20–35 kg/m2) each consumed 4 distinctly different diets, each for 1 wk. Spot urine samples were collected ∼2 h post meals on 3 intervention days/wk. Cumulative urine samples were collected daily over 3 separate temporal periods. A 24-h urine collection was created by combining the 3 cumulative urine samples. Urine samples were analyzed with metabolite fingerprinting by both high-resolution flow infusion electrospray mass spectrometry (FIE-HRMS) and proton nuclear magnetic resonance spectroscopy (1H-NMR). Concentrations of dietary intake biomarkers were measured with liquid chromatography triple quadrupole mass spectrometry and by integration of 1H-NMR data. Results Cross-validation modeling with 1H-NMR and FIE-HRMS data demonstrated the power of spot and cumulative urine samples in predicting dietary patterns in 24-h urine collections. Particularly, there was no significant loss of information when post-dinner (PD) spot or overnight cumulative samples were substituted for 24-h urine collections (classification accuracies of 0.891 and 0.938, respectively). Quantitative analysis of urine samples also demonstrated the relation between PD spot samples and 24-h urines for dietary exposure biomarkers. Conclusions We conclude that PD spot urine samples are suitable replacements for 24-h urine collections. Alternatively, cumulative samples collected overnight predict similarly to 24-h urine samples and have a lower collection burden for participants.

Author(s):  
G. Dayana Jeyaleela ◽  
S. Irudaya Monisha ◽  
J. Rosaline Vimala ◽  
A. Anitha Immaculate

Objective: Natural products from medicinal plants, either as isolated compounds or as standardized plant extracts exhibit promising source of medicinal activity against various diseases. The aim of the present work was to make an attempt of isolation of bioactive principle and characterization of the isolated compound, from the medicinal plant Melia dubaiMethods: The extraction was done by a cold percolation method and the compound was separated and isolated by chromatography technique such as a thin layer chromatography (TLC), column chromatography and high-performance liquid chromatography (HPLC). The isolated compound was crystallized and the structural characterization of the isolated compound was made using UV-Visible, FT-IR, 1H-NMR, GC-MS and MS techniques which confirmed the structure of the isolated compound.Results: The separated and isolated compound was characterized by both physical and spectral methods like Ultraviolet-Visible spectroscopy (UV-Visible), Fourier transform infrared spectroscopy (FT-IR), Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), Gas chromatography-mass spectrometry (GC-MS), and Mass spectrometry(MS). Based on the studies, organizational characteristics of one bioactive principle were deciphered. The results revealed that the isolated species is 2-chlorobenzimidazole and it agreed well with the reported value and spectra for 2-chlorobenzimidazole.Conclusion: The above results obtained in this research work clearly indicated the promising occurrence of 2-chlorobenzimidazole in Media dubia plant leaves. The future scope of these studies may guide us to view the biological activity of the isolated compound.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3651
Author(s):  
Natalia Drabińska ◽  
Piotr Młynarz ◽  
Ben de Lacy Costello ◽  
Peter Jones ◽  
Karolina Mielko ◽  
...  

Urinary volatile compounds (VCs) have been recently assessed for disease diagnoses. They belong to very diverse chemical classes, and they are characterized by different volatilities, polarities and concentrations, complicating their analysis via a single analytical procedure. There remains a need for better, lower-cost methods for VC biomarker discovery. Thus, there is a strong need for alternative methods, enabling the detection of a broader range of VCs. Therefore, the main aim of this study was to optimize a simple and reliable liquid–liquid extraction (LLE) procedure for the analysis of VCs in urine using gas chromatography-mass spectrometry (GC-MS), in order to obtain the maximum number of responses. Extraction parameters such as pH, type of solvent and ionic strength were optimized. Moreover, the same extracts were analyzed using Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), to evaluate the applicability of a single urine extraction for multiplatform purposes. After the evaluation of experimental conditions, an LLE protocol using 2 mL of urine in the presence of 2 mL of 1 M sulfuric acid and sodium sulphate extracted with dichloromethane was found to be optimal. The optimized method was validated with the external standards and was found to be precise and linear, and allowed for detection of >400 peaks in a single run present in at least 50% of six samples—considerably more than the number of peaks detected by solid-phase microextracton fiber pre-concentration-GC-MS (328 ± 6 vs. 234 ± 4). 1H-NMR spectroscopy of the polar and non-polar extracts extended the range to >40 more (mainly low volatility compounds) metabolites (non-destructively), the majority of which were different from GC-MS. The more peaks detectable, the greater the opportunity of assessing a fingerprint of several compounds to aid biomarker discovery. In summary, we have successfully demonstrated the potential of LLE as a cheap and simple alternative for the analysis of VCs in urine, and for the first time the applicability of a single urine solvent extraction procedure for detecting a wide range of analytes using both GC-MS and 1H-NMR analysis to enhance putative biomarker detection. The proposed method will simplify the transport between laboratories and storage of samples, as compared to intact urine samples.


2020 ◽  
Vol 23 (17) ◽  
pp. 3081-3092 ◽  
Author(s):  
Amanda J Lloyd ◽  
Thomas Wilson ◽  
Naomi D Willis ◽  
Laura Lyons ◽  
Helen Phillips ◽  
...  

AbstractObjective:Obtaining objective, dietary exposure information from individuals is challenging because of the complexity of food consumption patterns and the limitations of self-reporting tools (e.g., FFQ and diet diaries). This hinders research efforts to associate intakes of specific foods or eating patterns with population health outcomes.Design:Dietary exposure can be assessed by the measurement of food-derived chemicals in urine samples. We aimed to develop methodologies for urine collection that minimised impact on the day-to-day activities of participants but also yielded samples that were data-rich in terms of targeted biomarker measurements.Setting:Urine collection methodologies were developed within home settings.Participants:Different cohorts of free-living volunteers.Results:Home collection of urine samples using vacuum transfer technology was deemed highly acceptable by volunteers. Statistical analysis of both metabolome and selected dietary exposure biomarkers in spot urine collected and stored using this method showed that they were compositionally similar to urine collected using a standard method with immediate sample freezing. Even without chemical preservatives, samples can be stored under different temperature regimes without any significant impact on the overall urine composition or concentration of forty-six exemplar dietary exposure biomarkers. Importantly, the samples could be posted directly to analytical facilities, without the need for refrigerated transport and involvement of clinical professionals.Conclusions:This urine sampling methodology appears to be suitable for routine use and may provide a scalable, cost-effective means to collect urine samples and to assess diet in epidemiological studies.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 374
Author(s):  
Beatriz Jiménez ◽  
Mei Ran Abellona U ◽  
Panagiotis Drymousis ◽  
Michael Kyriakides ◽  
Ashley K. Clift ◽  
...  

The incidence of neuroendocrine neoplasms (NEN) is increasing, but established biomarkers have poor diagnostic and prognostic accuracy. Here, we aim to define the systemic metabolic consequences of NEN and to establish the diagnostic utility of proton nuclear magnetic resonance spectroscopy (1H-NMR) for NEN in a prospective cohort of patients through a single-centre, prospective controlled observational study. Urine samples of 34 treatment-naïve NEN patients (median age: 59.3 years, range: 36–85): 18 had pancreatic (Pan) NEN, of which seven were functioning; 16 had small bowel (SB) NEN; 20 age- and sex-matched healthy control individuals were analysed using a 600 MHz Bruker 1H-NMR spectrometer. Orthogonal partial-least-squares-discriminant analysis models were able to discriminate both PanNEN and SBNEN patients from healthy control (Healthy vs. PanNEN: AUC = 0.90, Healthy vs. SBNEN: AUC = 0.90). Secondary metabolites of tryptophan, such as trigonelline and a niacin-related metabolite were also identified to be universally decreased in NEN patients, while upstream metabolites, such as kynurenine, were elevated in SBNEN. Hippurate, a gut-derived metabolite, was reduced in all patients, whereas other gut microbial co-metabolites, trimethylamine-N-oxide, 4-hydroxyphenylacetate and phenylacetylglutamine, were elevated in those with SBNEN. These findings suggest the existence of a new systems-based neuroendocrine circuit, regulated in part by cancer metabolism, neuroendocrine signalling molecules and gut microbial co-metabolism. Metabonomic profiling of NEN has diagnostic potential and could be used for discovering biomarkers for these tumours. These preliminary data require confirmation in a larger cohort.


Blood ◽  
1997 ◽  
Vol 89 (10) ◽  
pp. 3778-3786 ◽  
Author(s):  
Francis G. Blankenberg ◽  
Peter D. Katsikis ◽  
Richard W. Storrs ◽  
Christian Beaulieu ◽  
Daniel Spielman ◽  
...  

Abstract Quantification of apoptotic cell death in vivo has become an important area of investigation in patients with acute lymphoblastic leukemia (ALL). We have devised a noninvasive analytical method to estimate the percentage of apoptotic lymphoblasts in doxorubicin-treated Jurkat T-cell ALL cultures, using proton nuclear magnetic resonance spectroscopy (1H NMR). We have found that the ratio of the methylene (CH2 ) resonance (at 1.3 ppm) to the methyl (CH3 ) resonance (at 0.9 ppm) signal intensity, as observed by 1H NMR, is directly proportional to the percentage of apoptotic lymphoblasts in vitro. The correlation between the CH2/CH3 signal intensity ratio and the percentage of apoptotic lymphoblasts was optimal 24 to 28 hours after doxorubicin treatment (r2 = .947, N = 27 samples). There was also a direct temporal relationship between an increase in the CH2/CH3 signal intensity ratio and the onset of apoptosis as detected by nuclear morphologic analysis, fluorescein-annexin V flow cytometry, and DNA gel electrophoresis. Thin-layer chromatography confirmed that a dynamic and/or compositional change of the plasma membrane, rather than increases in lipase activity or fatty acid production, appears to account for the increase in the CH2/CH3 signal intensity ratio during apoptosis. 1H NMR may have clinical utility for the early noninvasive assessment of chemotherapeutic efficacy in patients with ALL.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Minjiang Chen ◽  
Hong Zheng ◽  
Min Xu ◽  
Liangcai Zhao ◽  
Qianqian Zhang ◽  
...  

Abstract Background: The present study aimed to explore the changes in the hepatic metabolic profile during the evolution of diabetes mellitus (DM) and verify the key metabolic pathways. Methods: Liver samples were collected from diabetic rats induced by streptozotocin (STZ) and rats in the control group at 1, 5, and 9 weeks after STZ administration. Proton nuclear magnetic resonance spectroscopy (1H NMR)-based metabolomics was used to examine the metabolic changes during the evolution of DM, and partial least squares-discriminate analysis (PLS-DA) was performed to identify the key metabolites. Results: We identified 40 metabolites in the 1H NMR spectra, and 11 metabolites were further selected by PLS-DA model. The levels of α-glucose and β-glucose, which are two energy-related metabolites, gradually increased over time in the DM rats, and were significantly greater than those of the control rats at the three-time points. The levels of choline, betaine, and methionine decreased in the DM livers, indicating that the protective function in response to liver injury may be undermined by hyperglycemia. The levels of the other amino acids (leucine, alanine, glycine, tyrosine, and phenylalanine) were significantly less than those of the control group during DM development. Conclusions: Our results suggested that the hepatic metabolic pathways of glucose, choline-betaine-methionine, and amino acids were disturbed during the evolution of diabetes, and that choline-betaine-methionine metabolism may play a key role.


1984 ◽  
Vol 30 (3) ◽  
pp. 426-432 ◽  
Author(s):  
J R Bales ◽  
D P Higham ◽  
I Howe ◽  
J K Nicholson ◽  
P J Sadler

Abstract Numerous low-Mr metabolites--including creatinine, citrate, hippurate, glucose, ketone bodies, and various amino acids--have been identified in 400- and 500-MHz proton nuclear magnetic resonance (1H NMR) spectra of intact human urine. The presence of many of these was related to the specific condition of the donors: humans in different physiological states (resting, fasting, or post-exercise) and pathological conditions (e.g., diabetes mellitus, cadmium-induced renal dysfunction). We have also monitored the metabolism of simple nonendogenous compounds (methanol and ethanol) and of acetaminophen. The pH-dependencies of the NMR chemical shifts of some urine components are reported. Our studies show that high-resolution 1H NMR spectroscopy provides a fast, simple method for "fingerprint" identification of urinary compounds. In some cases, analytes can be quantified by standard additions or by comparing integrated peak areas for the metabolites with those for creatinine. Determinations of creatinine by 1H NMR spectroscopy compared well with those by an independent chemical assay based on the Jaffé reaction.


Author(s):  
Grzegorz Ciepielowski ◽  
Barbara Pacholczyk-Sienicka ◽  
Łukasz Albrecht

The industry of the counterfeit goods is one of the largest underground business in the world and it is rapidly growing. Counterfeits can lead not only to loss of profit for honest producers but also have a negative impact on consumers who receive poor quality goods at an excessive price and may be exposed to health damages and safety issues. Perfume industry is constantly exposed to the problem of counterfeits with the fast developing parallel market of inspired perfumes being an important issue. It prompts for the identification of methods that classify the quality of this type of products. In this paper the application of proton nuclear magnetic resonance spectroscopy is employed for the authentication of perfumery products for the first time. Molecular composition of several types of authentic brand fragrances for women were compared with their cheaper inspired equivalents and fake products. Our approach offers the prospect of a fast and simple method for discrimination and counterfeit detection of perfumes using 1H NMR spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document