scholarly journals How vocal temporal parameters develop: a comparative study between humans and songbirds, two distantly related vocal learners

Author(s):  
Miki Takahasi ◽  
Kazuo Okanoya ◽  
Reiko Mazuka

Abstract Human infants acquire motor patterns for speech during the first several years of their lives. Sequential vocalizations such as human speech are complex behaviors, and the ability to learn new vocalizations is limited to only a few animal species. Vocalizations are generated through the coordination of three types of organs: namely, vocal, respiratory, and articulatory organs. Moreover, sophisticated temporal respiratory control might be necessary for sequential vocalization involving human speech. However, it remains unknown how coordination develops in human infants and if this developmental process is shared with other vocal learners. To answer these questions, we analyzed temporal parameters of sequential vocalizations during the first year in human infants and compared these developmental changes to song development in the Bengalese finch, another vocal learner. In human infants, early cry was also analyzed as an innate sequential vocalization. The following three temporal parameters of sequential vocalizations were measured: note duration (ND), inter-onset interval, and inter-note interval (INI). The results showed that both human infants and Bengalese finches had longer INIs than ND in the early phase. Gradually, the INI and ND converged to a similar range throughout development. While ND increased until 6 months of age in infants, the INI decreased up to 60 days posthatching in finches. Regarding infant cry, ND and INI were within similar ranges, but the INI was more stable in length than ND. In sequential vocalizations, temporal parameters developed early with subsequent articulatory stabilization in both vocal learners. However, this developmental change was accomplished in a species-specific manner. These findings could provide important insights into our understanding of the evolution of vocal learning.

1971 ◽  
Vol 14 (4) ◽  
pp. 718-727 ◽  
Author(s):  
Philip Lieberman ◽  
Katherine S. Harris ◽  
Peter Wolff ◽  
Lorraine H. Russell

Cries were recorded from 20 normal newborn infants from birth to the fourth day of life. Sound spectrograms showed that these cries were similar to the vocalizations of nonhuman primates insofar as the infants seemed to produce sounds by means of a uniform cross-section, schwalike, vocal tract configuration. Under certain conditions the laryngeal excitation was breathy and formant frequencies corresponding to an open boundary condition at the glottis were generated. The infants did not produce the range of sounds typical of adult human speech. This inability appears to reflect, in part, limitations imposed by the neonatal vocal apparatus, which, like the nonhuman primate vocal tract, appears to be inherently incapable of producing the full range of human speech. The initial restrictions on the sound-making repertoire of human infants are also evident in previous perceptually based transcriptions of the utterances of infants as well as in spectrographic and cineradiographic studies.


2019 ◽  
Vol 375 (1789) ◽  
pp. 20180406 ◽  
Author(s):  
Peter L. Tyack

Humans and songbirds learn to sing or speak by listening to acoustic models, forming auditory templates, and then learning to produce vocalizations that match the templates. These taxa have evolved specialized telencephalic pathways to accomplish this complex form of vocal learning, which has been reported for very few other taxa. By contrast, the acoustic structure of most animal vocalizations is produced by species-specific vocal motor programmes in the brainstem that do not require auditory feedback. However, many mammals and birds can learn to fine-tune the acoustic features of inherited vocal motor patterns based upon listening to conspecifics or noise. These limited forms of vocal learning range from rapid alteration based on real-time auditory feedback to long-term changes of vocal repertoire and they may involve different mechanisms than complex vocal learning. Limited vocal learning can involve the brainstem, mid-brain and/or telencephalic networks. Understanding complex vocal learning, which underpins human speech, requires careful analysis of which species are capable of which forms of vocal learning. Selecting multiple animal models for comparing the neural pathways that generate these different forms of learning will provide a richer view of the evolution of complex vocal learning and the neural mechanisms that make it possible. This article is part of the theme issue ‘What can animal communication teach us about human language?’


Behaviour ◽  
1989 ◽  
Vol 109 (3-4) ◽  
pp. 191-199 ◽  
Author(s):  
Nobuo Masataka ◽  
Kazuo Fujita

AbstractForaging vocalizations given by Japanese and rhesus momkeys reared by their biological mothers differed from each other in a single parameter. Calls made by a Japanese monkey fostered by a rhesus female were dissimilar to those of conspecifics reared by their biological mothers, but similar to those of rhesus monkeys reared by their biological mothers, and the vocalizations given by rhesus monkeys fostered by Japanese monkey mothers were dissimilar to those of conspecifics reared by their biological mothers, but similar to those of Japanese monkeys reared by their biological mothers. Playback experiments revealed that both Japanese and rhesus monkeys distinguished between the calls of Japanese monkeys reared by their biological mothers and of the cross-fostered rhesus monkeys on one hand, and the vocalizations of rhesus monkeys reared by their biological mothers and of the cross-fostered Japanese monkey on the other hand. Thus, production of species-specific vocalizations was learned by each species, and it was the learned species-difference which the monkeys themselves discriminated.


1998 ◽  
Vol 21 (4) ◽  
pp. 499-511 ◽  
Author(s):  
Peter F. MacNeilage

The species-specific organizational property of speech is a continual mouth open-close alternation, the two phases of which are subject to continual articulatory modulation. The cycle constitutes the syllable, and the open and closed phases are segments – vowels and consonants, respectively. The fact that segmental serial ordering errors in normal adults obey syllable structure constraints suggests that syllabic “frames” and segmental “content” elements are separately controlled in the speech production process. The frames may derive from cycles of mandibular oscillation present in humans from babbling onset, which are responsible for the open-close alternation. These communication- related frames perhaps first evolved when the ingestion-related cyclicities of mandibular oscillation (associated with mastication [chewing] sucking and licking) took on communicative significance as lipsmacks, tonguesmacks, and teeth chatters – displays that are prominent in many nonhuman primates. The new role of Broca's area and its surround in human vocal communication may have derived from its evolutionary history as the main cortical center for the control of ingestive processes. The frame and content components of speech may have subsequently evolved separate realizations within two general purpose primate motor control systems: (1) a motivation-related medial “intrinsic” system, including anterior cingulate cortex and the supplementary motor area, for self-generated behavior, formerly responsible for ancestral vocalization control and now also responsible for frames, and (2) a lateral “extrinsic” system, including Broca's area and surround, and Wernicke's area, specialized for response to external input (and therefore the emergent vocal learning capacity) and more responsible for content.


2020 ◽  
Vol 287 (1941) ◽  
pp. 20202531
Author(s):  
Julia Fischer ◽  
Franziska Wegdell ◽  
Franziska Trede ◽  
Federica Dal Pesco ◽  
Kurt Hammerschmidt

The extent to which nonhuman primate vocalizations are amenable to modification through experience is relevant for understanding the substrate from which human speech evolved. We examined the vocal behaviour of Guinea baboons, Papio papio , ranging in the Niokolo Koba National Park in Senegal. Guinea baboons live in a multi-level society, with units nested within parties nested within gangs. We investigated whether the acoustic structure of grunts of 27 male baboons of two gangs varied with party/gang membership and genetic relatedness. Males in this species are philopatric, resulting in increased male relatedness within gangs and parties. Grunts of males that were members of the same social levels were more similar than those of males in different social levels ( N = 351 dyads for comparison within and between gangs, and N = 169 dyads within and between parties), but the effect sizes were small. Yet, acoustic similarity did not correlate with genetic relatedness, suggesting that higher amounts of social interactions rather than genetic relatedness promote the observed vocal convergence. We consider this convergence a result of sensory–motor integration and suggest this to be an implicit form of vocal learning shared with humans, in contrast to the goal-directed and intentional explicit form of vocal learning unique to human speech acquisition.


2013 ◽  
Vol 7 (3-4) ◽  
pp. 157 ◽  
Author(s):  
Adena Schachner

Bregman and colleagues describe methods for testing whether horses entrain their actions to an auditory beat. If horses can entrain, does this necessarily imply that there is no causal relationship between vocal learning and entrainment? I propose an alternative way in which vocal learning may relate to entrainment – one that is consistent with entrainment in some vocal non-learning species. Due to engaging in the developmental process of vocal learning, there may be early experiences common to vocal learners, but rare in vocal non-learning species. It is possible that it is these experiences that are critical for entrainment – not vocal learning itself, nor related genes. These experiences may result in critical changes in neural development, leading to the development of cognitive mechanisms necessary for both vocal learning and entrainment. This hypothesis changes the causal story from one of genetic change to one of changes in experience, and from a focus on evolution to a focus on individual ontogeny. Thus, if horses can entrain, we should not immediately reject the idea of a relationship between vocal learning and entrainment: First, we should consider whether some unusual aspect of the horses’ experience effectively replicates the unusual experiences of vocal learning animals.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S659-S659
Author(s):  
Nicholas J Bishop ◽  
Kaipeng Wang

Abstract Cognitive health, physical function, and chronic disease represent interdependent health outcomes that may exert influence on the course of each other’s development. To investigate the association between baseline health in each domain and developmental change across domains, we estimated trajectories of working memory, mobility limitations, and comorbidity among US adults age 65 and older over 18 years. We drew observations from the nationally-representative Health and Retirement Study with an analytic sample consisting of 5,963 adults age 65 and over in 1998. Immediate word recall, an 11-item Nagi scale of mobility limitations, and a summary count of eight doctor-diagnosed chronic conditions were measured biennially from 1998 to 2016. Parallel-process quadratic growth models with individually-varying time scores were used to estimate non-linear trajectories of each health measure, allowing identification of associations between baseline health and developmental change in each health process at both earlier and later stages of older adulthood. All estimates adjusted for covariates, complex survey design, and missing data. Greater baseline immediate word recall was associated with less rapid increase in mobility limitations at earlier ages. More baseline mobility limitations were associated with faster increase in comorbidity at earlier ages. Greater baseline chronic conditions were associated with more rapid increase in mobility limitations at later ages. These results highlight the importance of conceptualizing health among older adults as an interdependent and developmental process and should help clinicians recognize that single-domain health status may influence the progression of other health outcomes at different stages of older adulthood.


2001 ◽  
Vol 24 (1) ◽  
pp. 65-66
Author(s):  
Hideko Takeshita

I present my observations of combinatory manipulations by three infant chimpanzees in a series of test tasks. Common characteristics of motor patterns were observed across the tasks between both infant chimpanzees and 1-year-old infants. Based on the results, I point out that comparative approach can illuminate Thelen et al.'s arguments.


2014 ◽  
Vol 10 (5) ◽  
pp. 20140095 ◽  
Author(s):  
Kathleen Wermke ◽  
Johannes Hain ◽  
Klaus Oehler ◽  
Peter Wermke ◽  
Volker Hesse

The specific impact of sex hormones on brain development and acoustic communication is known from animal models. Sex steroid hormones secreted during early development play an essential role in hemispheric organization and the functional lateralization of the brain, e.g. language. In animals, these hormones are well-known regulators of vocal motor behaviour. Here, the association between melody properties of infants' sounds and serum concentrations of sex steroids was investigated. Spontaneous crying was sampled in 18 healthy infants, averaging two samples taken at four and eight weeks, respectively. Blood samples were taken within a day of the crying samples. The fundamental frequency contour (melody) was analysed quantitatively and the infants' frequency modulation skills expressed by a melody complexity index (MCI). These skills provide prosodic primitives for later language. A hierarchical, multiple regression approach revealed a significant, robust relationship between the individual MCIs and the unbound, bioactive fraction of oestradiol at four weeks as well as with the four-to-eight-week difference in androstenedione. No robust relationship was found between the MCI and testosterone. Our findings suggest that oestradiol may have effects on the development and function of the auditory–vocal system in human infants that are as powerful as those in vocal-learning animals.


2000 ◽  
Vol 89 (5) ◽  
pp. 2015-2022 ◽  
Author(s):  
B. Wilken ◽  
J. M. Ramirez ◽  
F. Hanefeld ◽  
D. W. Richter

Aminophylline is a respiratory stimulant commonly used for the treatment of central apnea. Experiences from clinical practice, however, revealed that aminophylline is not reliably effective in preterm infants, whereas it is normally effective in infants and mature patients. In an established animal model for postnatal development of respiratory control mechanisms, we therefore examined the hypothesis that the clinical observations reflect a developmental change in the sensitivity of the central respiratory network to methylxanthines. The medullary respiratory network was isolated at different postnatal ages ( postnatal days 1–13; P1–P13) in a transverse mouse brain stem slice preparation. This preparation contains the pre-Bötzinger complex (PBC), a region that is critical for generation of respiratory rhythm. Spontaneous rhythmic respiratory activity was recorded from the hypoglossal (XII) rootlets and from neurons in the PBC by using the whole cell patch clamp technique. Bath-applied aminophylline [20 μM] increased the frequency (+41%) in neonatal animals (P1–P6) without affecting the amplitude of respiratory burst activity in XII rootlets. The same concentration of aminophylline did not have any significant effect on the frequency of respiratory XII bursts but increased the amplitude (+31%) in juvenile animals (P7–P13). In the same age group, aminophylline also augmented the amplitude and the duration of respiratory synaptic drive currents in respiratory PBC neurons. The data demonstrate that augmentation of the respiratory output is due to direct enhancement of central respiratory network activity and increase of synaptic drive of hypoglossal motoneurons in juvenile, but not neonatal, animals. This indicates a developmental change in the efficacy of aminophylline to reinforce central respiratory network activity. Therefore, we believe that the variable success in treating respiratory disturbances in premature infants reflects maturational changes in the expression of receptors and/or intracellular signal pathways in the central respiratory network.


Sign in / Sign up

Export Citation Format

Share Document