scholarly journals Variation in zinc concentration of sweetcorn kernels reflects source–sink dynamics influenced by kernel number

2020 ◽  
Vol 71 (16) ◽  
pp. 4985-4992
Author(s):  
Zhong Xiang Cheah ◽  
Tim J O’Hare ◽  
Stephen M Harper ◽  
Michael J Bell

Abstract Grain yield and mineral nutrient concentration in cereal crops are usually inversely correlated, undermining biofortification efforts. Here, sink size, expressed as kernel number per cob, was manipulated by controlling the time when the silks of sweetcorn (Zea mays) cv. Hybrix 5 and var. HiZeax 103146 were exposed to pollen. Twelve other varieties were manually pollinated to achieve the maximum potential kernel number per cob, and kernel Zn concentration was correlated with kernel number and kernel mass. As kernel number increased, kernel Zn concentration decreased, with the decrease occurring to similar extents in the embryo tissue and the rest of the kernel. However, total kernel Zn accumulated per cob increased with increasing kernel number, as the small decreases in individual kernel Zn concentration were more than offset by increases in kernel number. When both kernel number and mass were considered, 90% of the variation in kernel Zn concentration was accounted for. Differential distribution of assimilates and Zn to sweetcorn cobs led to significant decreases in kernel Zn concentration with increasing kernel number. This suggests there will be challenges to achieving high kernel Zn concentrations in modern high-yielding sweetcorn varieties unless genotypes with higher Zn translocation rates into kernels can be identified.

2012 ◽  
Vol 9 (6) ◽  
pp. 7893-7941 ◽  
Author(s):  
J. T. Walker ◽  
M. R. Jones ◽  
J. O. Bash ◽  
L. Myles ◽  
T. Meyers ◽  
...  

Abstract. Recent incorporation of coupled soil biogeochemical and bi-directional NH3 air-surface exchange algorithms into regional air quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this represents a significant advancement over previous approaches, the evaluation and improvement of such modeling systems for fertilized crops requires process level field measurements over extended periods of time that capture the range of soil, vegetation, and atmospheric conditions that drive short term (i.e., post fertilization) and total growing seasonNH3 fluxes. This study examines the processes of NH3 air-surface exchange in a fertilized corn (Zea mays) canopy over the majority of a growing season to characterize soil emissions after fertilization and investigate soil-canopy interactions. Micrometeorological flux measurements above the canopy, measurements of soil, leaf apoplast and dew/guttation chemistry, and a combination of in-canopy measurements, inverse source/sink, and resistance modeling were employed. Over a period of approximately 10 weeks following fertilization, daily mean and median net canopy-scale fluxes yielded cumulative total N losses of 8.4% and 6.1%, respectively, of the 134 kg N ha−1 surface applied to the soil as urea ammonium nitrate (UAN). During the first month after fertilization, daily mean emission fluxes were positively correlated with soil temperature and soil volumetric water. Diurnally, maximum hourly average fluxes of ≈700 ng N m−2 s−1 occurred near mid-day, coincident with the daily maximum in friction velocity. Net emission was still observed 5 to 10 weeks after fertilization, although mid-day peak fluxes had declined to ≈125 ng N m−2 s−1 A key finding of the surface chemistry measurements was the observation of high pH (7.0 – 8.5) in leaf dew/guttation, which reduced the ability of the canopy to recapture soil emissions during wet periods. In-canopy measurements near peak LAI indicated that the concentration of NH3 just above the soil surface was highly positively correlated with soil volumetric water, which likely reflects the influence of soil moisture on resistance to gaseous diffusion through the soil profile and hydrolysis of remaining urea. Inverse source/sink and resistance modeling indicated that the canopy recaptured ≈73% of soil emissions near peak LAI. Stomatal uptake may account for 12–34% of total uptake by foliage during the day compared to 66–88% deposited to the cuticle. Future process-level \\NH3 studies in fertilized cropping systems should focus on the temporal dynamics of net emission to the atmosphere from fertilization to peak LAI and improvement of soil and cuticular resistance parameterizations.


2020 ◽  
Vol 5 (1) ◽  

Billions of peoples are directly affected from the micronutrient malnutrition called hidden hunger affecting one in three people. Micronutrient Iron (Fe), and zinc (Zn) deficiencies affect large numbers of people worldwide. Iron (Fe) deficiency leads to maternal mortality, mental damage and lower disease resistant of children. Likely Zinc (Zn) deficiency is responsible for stunting, lower respiratory tract infections, and malaria and diarrhea disease in human beings. Nepalese lentils are in fact rich sources of proteins and micronutrients (Fe, Zn) for human health and straws as a valuable animal feed. It has ability to sequester N and C improves soil nutrient status, which in turn provides sustainable production systems. Twenty five lentil genotypes were evaluated to analyze genotype × environment interaction for iron and zinc concentration in the grains. Analysis of variance (ANOVA) indicated that the accessions under study were found varied significantly (P=<0.001) for both seed Fe and Zn concentrations at all the three locations. Pooled analysis of variance over locations displayed highly significant (at P=<0.001) differences between genotypes, locations and genotype × location interaction for Zn micronutrient but insignificant genotype x location interaction was found in Fe micronutrient. Among 25 genotypes, the ranges for seed Fe concentration were 71.81ppm (ILL-2712)-154.03 ppm (PL-4) (mean 103.34 ppm) at Khajura, 79.89 ppm (ILL-3490)-128.14 ppm (PL-4) (mean 95.43 ppm) at Parwanipur, and 83.92 ppm (ILL-7979) -137.63 ppm (ILL-6819) (mean 103.11ppm) at Rampur, while the range across all the three locations was 82.53 ppm (ILL-7979) -133.49 ppm (PL-4) (mean 101.04 ppm). Likely the range for seed Zn concentration was 53.76 ppm (ILL-7723) – 70.15 ppm (ILL-4605) (mean 61.84 ppm) at Khajura, while the ranges for Parwanipur and Rampur were 54.21 ppm (ILL-7723) -91,94 ppm (ILL-4605) (mean 76.55 ppm) and 46.41 ppm (LG-12) – 59.95 ppm (ILL-4605) (mean 54.27 ppm) , respectively. The range across the three environments was 54.03 ppm (ILL-7723) – 75.34 ppm (HUL-57) (mean 64.22 ppm). Although both the micronutrients were influenced by environment, seed Fe was more sensitive to environmental fluctuations in comparison to seed Zn concentration. The G × E study revealed that it was proved that genotypes Sagun, RL-6 and LG-12 were more stable for seed Fe concentration and genotypes WBL-77, ILL-7164, RL-11 were found more stable for seed Zn concentration. In the AMMI analysis employing Gollob’s test, first two PC explained 100% of the G × E variation. PC 1 and PC 2 explained 87.19% and 12.81% of total G × E interactions for Fe concentration and likely for Zn concentration; PC1 and PC2 explained 70.11% and 29.88%, respectively. The critical perusal of biplot revealed that Parawnipur locations was found to discriminating power for Fe concentration while for Zn concentration Khajura location was found to be most discriminative. The critical analysis of pedigree vis-à-vis micronutrient concentration did not reveal any correlation. This is probably the first report on iron and zinc concentration in lentil from Nepal.


2011 ◽  
pp. 963-971
Author(s):  
G. Lang ◽  
T. Valentino ◽  
T.L. Robinson ◽  
J. Freer ◽  
H. Larsen ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2013
Author(s):  
Muhammad Nawaz ◽  
Sabtain Ishaq ◽  
Hasnain Ishaq ◽  
Naeem Khan ◽  
Naeem Iqbal ◽  
...  

The boron (B) concentration surpasses the plant need in arid and semi-arid regions of the world, resulting in phyto-toxicity. Salicylic acid (SA) is an endogenous signaling molecule responsible for stress tolerance in plants and is a potential candidate for ameliorating B toxicity. In this study, the effects of seed priming with SA (0, 50, 100 and 150 µM for 12 h) on the growth, pigmentation and mineral concentrations of maize (Zea mays L.) grown under B toxicity were investigated. One-week old seedlings were subjected to soil spiked with B (0, 15 and 30 mg kg−1 soil) as boric acid. Elevating concentrations of B reduced the root and shoot length, but these losses were significantly restored in plants raised from seeds primed with 100 µM of SA. The B application decreased the root and shoot fresh/dry biomasses significantly at 30 mg kg−1 soil. The chlorophyll and carotenoid contents decreased with increasing levels of B, while the contents of anthocyanin, H2O2, ascorbic acid (ASA) and glycinebetaine (GB) were enhanced. The root K and Ca contents were significantly increased, while a reduction in the shoot K contents was recorded. The nitrate concentration was significantly higher in the shoot as compared to the root under applied B toxic regimes. However, all of these B toxicity effects were diminished with 100 µM SA applications. The current study outcomes suggested that the exogenously applied SA modulates the response of plants grown under B toxic conditions, and hence could be used as a plant growth regulator to stimulate plant growth and enhance mineral nutrient uptake under B-stressed conditions.


1992 ◽  
Vol 72 (1) ◽  
pp. 27-33 ◽  
Author(s):  
R. T. Weiland

Recent studies have shown that pollen from a long-season maize (Zea mays L.) hybrid increased yield of a short-season hybrid by lengthening the effective grain-filling period, while the reciprocal cross did not alter this period or yield. This effect (metaxenia) was evaluated further in the studies reported here with hybrids of more diverse maturity and under both high and low N fertility. In the first year of this study (1989), sib- and cross-pollinations were made among B73Ht × Mo17 (B × 7) and two early-silking hybrids, LH59 × LH146 (L × 6) and Pioneer 3732 (3732) under N-sufficient (275 kg ha−1) and two lower N regimes (17 and 67 kg ha−1). Only a few significant effects were observed and these were noted at high N with one exception. With 3732 pollen, grain yield of B × 7 was decreased at 275 kg N ha−1, and physiological maturity occurred 3 d earlier. Yield of 3732 was increased by L × 6 pollen in comparison with B × 7 pollen. Kernel number and average kernel weight were not altered by pollen source. Pollen type did not affect yields under low N fertility, except for a reduction when B × 7 was pollinated by L × 6 at the 67-kg N ha−1 rate. In 1990, under N-sufficient fertility, B73Ht × LH156 (B × 6), a late-silking hybrid, and LH146 × LH82 (L × 2), an earlier hybrid, were sib- and cross-pollinated with B × 7 and 3732. The only significant effect observed was that L × 2 pollen increased B × 6 yield. Thus with the hybrids used, yields of early-season types were not altered by cross-pollination with long-season types. Previous results showing increased yields when 3732 was pollinated by B × 7 were not duplicated in either year, suggesting metaxenia effects are highly dependent upon environment.Key words: Metaxenia, xenia, cross-pollination, maize, yield, N levels


1981 ◽  
Vol 17 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Y. Kapulnik ◽  
S. Sarig ◽  
I. Nur ◽  
Y. Okon ◽  
J. Kigel ◽  
...  

SUMMARYInoculatingZea mays(three cultivars),Sorghum bicolor, Panicum miliaceumandSetaria italicawith nitrogen-fixing bacteria of the genus Azospirillum in Northern Negev and Bet Shean Valley field experiments resulted in significant increases in yield of grain and foliage of commercial value. It was concluded that inoculating summer cereal crops in Israel may save valuable nitrogen fertilizer.


1993 ◽  
Vol 2 (3) ◽  
pp. 197-270
Author(s):  
Markku Yli-Halla

The Zn status of cultivated soils of Finland was investigated by chemical analyses and bioassays. The effect on ryegrass of different Zn fertilizers and Zn rates was studied in pot experiments and their effect on barley and timothy in field experiments. In an uncontaminated surface soil material of 72 mineral soils and 34 organogenic soils, total Zn (Zntot) was 10.3-202 mg kg-1(median 66 mg kg-1). In mineral soils, Zntot correlated positively with clay content (r = 0.81***) and in organogenic soils negatively with organic C (r = -0.53***). Zinc bound by organic matter and sesquioxides was sequentially extracted by 0.1 M K4P2O7 (Znpy) and 0.05 M oxalate at pH 2.9 (Znox), respectively. The sum Znpy + Znox, a measure of secondary Zn potentially available to plants, was 2 - 88% of Zntot and was the lowest in clay (median 5%) and highest in peat soils (median 49%). Water-soluble and exchangeable Zn consisted of0.3 - 37% (median 3%) of Zntot, the percentage being higher in acid soils, particularly in peat soils. Zinc was also extracted by 0.5 M ammonium acetate - 0,5 M acetic acid - 0.02 M Na2-EDTA at pH 4.65 (ZnAC), the method used in soil testing in Finland. The quantities of ZnAC (median 2.9 mg dm-3, range 0.6 - 29.9 mg dm-3) averaged 50% and 75% of Znpy + Znox in mineral and organogenic soils, respectively, and correlated closely with Znpy. In soil profiles, ZnAC was with few exceptions higher in the plough layer (0 - 20 cm) than in the subsoil (30 - 100 cm). In an intensive pot experiment on 107 surface soils, four crops of ryegrass took up 2 - 68% (median 26%)of Znpy + Znox. The plant-available Zn reserves were not exhausted even though in a few peat soils the Zn supply to grass decreased over time. Variation of Zn uptake was quite accurately explained by ZnAC but increasing pH had a negative impact on Zn uptake. Application of Zn (10 mg dm-3 of soil as ZnSO4 * 7 H2O) did not give rise to yield increases. In mineral soils, increase of plant Zn concentration correlated negatively with soil pH while ZnAC was of secondary importance. In those organogenic soils in which the reserves of native Zn were the most effectively utilized, plant Zn concentration also responded most strongly to applied Zn. In two 2-year field experiments, Zn application did not increase timothy or barley yields. Zinc concentration of timothy increased from 30 mg kg-1 to 33 and 36 mg kg-1 when 3 or 6 kg Zn ha-1 was applied, respectively. The efficiency of ZnSO4 * 7 H2O alone did not differ from that of a fertilizer where ZnSO4 * 7H20 was granulated with gypsum. Zinc concentration of barley grains increased by foliar sprays of Na2Zn-EDTA but only a marginal response to soil-applied Zn (4.8 or 5.4 kg ha-1 over three years) was detected in three 3-year experiments. High applications of Zn to soil (15 or 30 kg ha-1 as ZnSO4 * 7H2O) were required to increase Zn concentration of barley markedly. In order to prevent undue accumulation of fertilizer Zn in soil, it is proposed that Zn fertilizer recommendations for field crops should be based on both soil pH and ZnAC. In slightly acid and neutral soils, even if poor in Zn, response of plant Zn concentration to applied Zn remains small while there is a high response in strongly acid soils.


HortScience ◽  
2013 ◽  
Vol 48 (12) ◽  
pp. 1470-1477 ◽  
Author(s):  
Martin Makgose Maboko ◽  
Isa Bertling ◽  
Christian Phillipus Du Plooy

Mycorrhizal inoculation improves nutrient uptake in a range of host plants. Insufficient nutrient uptake by plants grown hydroponically is of major environmental and economic concern. Tomato seedlings, therefore, were treated with a mycorrhizal inoculant (Mycoroot™) at transplanting to potentially enhance nutrient uptake by the plant. Then seedlings were transferred to either a temperature-controlled (TC) or a non-temperature-controlled (NTC) tunnel and maintained using the recommended (100%) or a reduced (75% and 50%) nutrient concentration. Plants grown in the NTC tunnel had significantly poorer plant growth, lower fruit mineral concentration, and lower yield compared with fruit from plants in the TC tunnel. Leaves from plants in the NTC tunnel had higher microelement concentrations than those in the TC tunnel. Highest yields were obtained from plants fertigated with 75% of the recommended nutrient concentration, and not from the 100% nutrient concentration. Application of arbuscular mycorrhizal fungi (AMF) neither enhanced plant growth, nor yield, nor fruit mineral nutrient concentrations. However, temperature control positively affected the fruit Mn and Zn concentration in the TC tunnel following AMF application.


Sign in / Sign up

Export Citation Format

Share Document