scholarly journals Beneficial rhizobacteria Pseudomonas simiae WCS417 induce major transcriptional changes in plant sugar transport

2020 ◽  
Vol 71 (22) ◽  
pp. 7301-7315 ◽  
Author(s):  
Antoine Desrut ◽  
Bouziane Moumen ◽  
Florence Thibault ◽  
Rozenn Le Hir ◽  
Pierre Coutos-Thévenot ◽  
...  

Abstract Plants live in close relationships with complex populations of microorganisms, including rhizobacterial species commonly referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are able to improve plant productivity, but the molecular mechanisms involved in this process remain largely unknown. Using an in vitro experimental system, the model plant Arabidopsis thaliana, and the well-characterized PGPR strain Pseudomonas simiae WCS417r (PsWCS417r), we carried out a comprehensive set of phenotypic and gene expression analyses. Our results show that PsWCS417r induces major transcriptional changes in sugar transport and in other key biological processes linked to plant growth, development, and defense. Notably, we identified a set of 13 genes of the SWEET and ERD6-like sugar transporter gene families whose expression is up- or down-regulated in response to seedling root inoculation with the PGPR or exposure to their volatile compounds. Using a reverse genetic approach, we demonstrate that SWEET11 and SWEET12 are functionally involved in the interaction and its plant growth-promoting effects, possibly by controlling the amount of sugar transported from the shoot to the root and to the PGPR. Altogether, our study reveals that PGPR-induced beneficial effects on plant growth and development are associated with changes in plant sugar transport.

2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Chiara Guerrieri ◽  
Andrea Fiorini ◽  
Elisabetta Fanfoni ◽  
Vincenzo Tabaglio ◽  
Pier Sandro Cocconcelli ◽  
...  

Plant growth promoting rhizobacteria (PGPR) can display several plant-beneficial properties, including support to plant nutrition, regulation of plant growth, and biocontrol of pests. Mechanisms behind these effects are directly related to the presence and expression of specific genes, and different PGPR strains can be differentiated by the presence of different genes. In this study we reported a comprehensive evaluation of a novel PGPR Klebsiella variicola UC4115 from the field to the lab, and from the lab to the plant. The isolate from tomato field was screened in-vitro for different activities related to plant nutrition and growth regulation as well as for antifungal traits. We performed a functional annotation of genes contributing to plant-beneficial functions previously tested in-vitro. Furthermore, the in-vitro characterization, the whole genome sequencing and annotation of K. variicola UC4115, were compared with the well-known PGPR Azospirillum brasilense strain Sp7. This novel comparative analysis revealed different accumulation of plant-beneficial functions contributing genes, and the presence of different genes that accomplished the same functions. Greenhouse assays on tomato seedlings from BBCH 11–12 to BBCH > 14 were performed under either organic or conventional management. In each of them, three PGPR inoculations (control, K. variicola UC4115, A. brasilense Sp7) were applied at either seed-, root-, and seed plus root level. Results confirmed the PGP potential of K. variicola UC4115; in particular, its high value potential as indole-3-acetic acid producer was observed in increasing of root length density and diameter class length parameters. While, in general, A. brasilense Sp7 had a greater effect on biomass, probably due to its high ability as nitrogen-fixing bacteria. For K. variicola UC4115, the most consistent data were noticed under organic management, with application at seed level. While, A. brasilense Sp7 showed the greatest performance under conventional management. Our data highlight the necessity to tailor the selected PGPR, with the mode of inoculation and the crop-soil combination.


2021 ◽  
pp. 47-58
Author(s):  
Tulja Sanam ◽  
S. Triveni ◽  
J. Satyanaryana ◽  
Sridhar Goud Nerella ◽  
K. Damodara Chari ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) contribute to an increase in crop yield through an environmentally friendly method, therefore eight rhizospheric bacteria, two of each genera Bacillus, Pseudomonas, Azotobacter and Azospirillum were examined for their efficacy to solubilize mineral nutrients using atomic absorption spectrophotometry and a flame photometer. Their potency to produce phytohormones, synthesis biocontrol components and their compatibility with pesticides using in vitro assays was studied. All of the chosen bacterial isolates proved positive for the above-mentioned Plant Growth Promoting traits. Among the eight bacterial isolates Pseudomonas isolate P69 showed the highest phosphorous solubilization efficiency of 190.91 % and another isolate P48 produced a maximum of 27.63µg mL-1 of gibberellic acid, Bacillus isolate B120 could solubilize maximum amount of ZnO and ZnCO3 accounting for 21.3ppm and 25.9ppm, respectively, not merely in terms of solubilization when compared to the other isolates, B120 produced the highest levels of HCN (77.33 ppm TCC) and siderophores (48.87psu). On day 9 after inoculation, Azotobacter isolate AZB17 performed effectively in potassium solubilization of 6.25g mL-1 with a pH drop to 3.83. The Azospirillum isolate ASP25 outperformed all other isolates in terms of IAA production (22.64g mL-1) and Bacillus isolate B365 was found to be more compatible with eight different pesticides used in the field at varying concentrations. All of these factors point to the possibility of using these bacterial isolates B120, P48, P69, AZB17, and ASP25 as biofertilizers in sustainable agriculture.


2015 ◽  
Vol 2 (1) ◽  
pp. 1-8
Author(s):  
Moonmoon Nahar Asha ◽  
Atiqur Rahman ◽  
Quazi Forhad Quadir ◽  
Md Shahinur Islam

A laboratory experiment was performed to isolate some native rhizobacteria that could be used as bioinoculants for sustainable crop production. A total of 43 rhizobacteria were isolated from undisturbed plant rhizosphere soils of three different locations of Bangladesh and evaluated their plant growth promoting traits, both direct and indirect. The study has screened out isolates on the basis of their phosphorous solubilization and nitrogen (N) fixation. The phosphate solubilization assay in National Botanical Research Institute of Phosphate (NBRIP) medium revealed that 12 bacterial isolates were able to solubilize tricalcium phosphate and the rhizobacteria M25 showed best performance with a PSI of 3.33 at 5 day. Exactly 47% (20 isolates) of the isolated rhizobacteria were able to grow in N-free Winogradsky’s medium, which is an indication of potential N2-fixers. Among the 20 potential N-fixers, 15 were able to grow within 24 hours of incubation indicating that they are more efficient in Nfixation. The present study successfully isolated and characterized 43 rhizobacteria. Some of these isolated rhizobacteria have potential plant growth promoting traits and are potential plant growth promoting rhizobacteria (PGPR) candidate. Considering all plant growth promoting traits, the isolate F37 was the best followed by M6. However, further experiments are needed to determine the effectiveness of these isolates under in vitro and different field conditions to understand the nature of interaction with the plant and environment.Res. Agric., Livest. Fish.2(1): 1-8, April 2015


2020 ◽  
Vol 18 (1) ◽  
pp. 58-66
Author(s):  
Eka Oktaviani ◽  
Arina Tri Lunggani ◽  
Rejeki Siti Ferniah

Ekosistem mangrove terdiri dari komponen penyusun komunitas mangrove yang berinteraksi dengan faktor lingkungan di habitat tersebut. Ekosistem ini mudah mengalami kerusakan akibat kondisi pasang naik dan pasang surut wilayah perairan laut maupun hilir sungai, yang bermuara ke perairan laut. Peran penting ekosistem ini adalah dalam perlindungan daerah pesisir karena mampu melawan kerusakan yang disebabkan oleh perairan laut, seperti tsunami dan badai siklon tropis. Akan tetapi, ekosistem ini sering tidak diperhatikan atas fungsi tersebut. Ekosistem ini dilindungi di dunia karena memiliki tingkat kerusakan komponen penyusun yang tinggi. Ekosistem mangrove Teluk Awur yang terletak di Kabupaten Jepara, Provinsi Jawa Tengah, merupakan  salah satu ekosistem mangrove yang mengalami kerusakan cukup parah karena perluasan lahan budidaya ikan (tambak), sehingga mendorong terjadinya erosi pantai. Peremajaan kembali dan konservasi ekosistem mangrove dapat dilakukan dengan menggunakan bakteri tanah yang mampu mendukung pertumbuhan tanaman atau yang biasa disebut Plant Growth Promoting Rhizobacteria (PGPR). Salah satu mekanisme pendukung pertumbuhan tanaman oleh kelompok PGPR dapat dilakukan dengan aktivitas pelarutan fosfat karena fosfat dalam tanah berada dalam bentuk senyawa yang sulit diserap oleh tanaman. Penelitian ini bertujuan untuk memperoleh isolat Rhizobakteri pelarut fosfat yang unggul dalam melarutkan fosfat secara in-vitro dan mengetahui karakter isolat yang diperoleh. Isolasi dan penapisan rhizobakteri pelarut fosfat dilakukan menggunakan medium Pikovskaya agar. Karakterisasi isolat potensial secara mikrobiologi dan uji aktivitas biokimia. Hasil penelitian menunjukkan bahwa rhizobakteri pelarut fosfat potensial yang berhasil diisolasi, secara mikrobiologi teridentifikasi ke dalam genus Enterobacter. Mangrove ecosystems consist of constituent components of mangrove communities that interact with environmental factors in the habitat. This ecosystem is susceptible to damage due to the high tide and tidal conditions of the sea and downstream rivers that flow into the ocean waters. The important role of this ecosystem is in the protection of coastal areas because it is able to resist damage caused by marine waters such as tsunamis and tropical cyclone storms. However, this ecosystem is often overlooked to these functions. This ecosystem is protected in the world because it has a high level of damage to its constituent components. Mangrove ecosystem of Teluk Awur, which is located in Jepara Regency, is one of the mangrove ecosystems that suffered severe damage due to the expansion of fish farming land (ponds). Rejuvenation and conservation of mangrove ecosystems can be done by using bacteria that support mangrove plant growth, which commonly called Plant Growth Promoting Rhizobacteria (PGPR). One of the supporting mechanisms of plant growth by the PGPR group can be carried out with phosphate dissolving activity because phosphate in the soil is in the form of compounds that are difficult to absorb by plants. This study aims to obtain potential phosphate solubilizer Rhizobacteria in dissolving phosphate in-vitro and to determine character of the obtained isolate. Isolation and screening of potential phosphate solubilizer Rhizobacteria were carried out using Pikovskaya agar medium. Microbiological characterization of potential isolates was carried out based on microbiological and/or biochemical activity. The results showed that potential phosphate solubilizer Rhizobacteria, microbiologically identified to genus of Enterobacter.


2020 ◽  
Vol 254 ◽  
pp. 109779 ◽  
Author(s):  
Srinivas Ravi Manoj ◽  
Chinnannan Karthik ◽  
Krishna Kadirvelu ◽  
Padikasan Indra Arulselvi ◽  
Thangavel Shanmugasundaram ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document