Marker-based crop model-assisted ideotype design to improve avoidance of abiotic stress in bread wheat

Author(s):  
Matthieu Bogard ◽  
Delphine Hourcade ◽  
Benoit Piquemal ◽  
David Gouache ◽  
Jean-Charles Deswartes ◽  
...  

Abstract Wheat phenology allows escape from seasonal abiotic stresses including frosts and high temperatures, the latter being forecast to increase with climate change. The use of marker-based crop models to identify ideotypes has been proposed to select genotypes adapted to specific weather and management conditions and anticipate climate change. In this study, a marker-based crop model for wheat phenology was calibrated and tested. Climate analysis of 30 years of historical weather data in 72 locations representing the main wheat production areas in France was performed. We carried out marker-based crop model simulations for 1019 wheat cultivars and three sowing dates, which allowed calculation of genotypic stress avoidance frequencies of frost and heat stress and identification of ideotypes. The phenology marker-based crop model allowed prediction of large genotypic variations for the beginning of stem elongation (GS30) and heading date (GS55). Prediction accuracy was assessed using untested genotypes and environments, and showed median genotype prediction errors of 8.5 and 4.2 days for GS30 and GS55, respectively. Climate analysis allowed the definition of a low risk period for each location based on the distribution of the last frost and first heat days. Clustering of locations showed three groups with contrasting levels of frost and heat risks. Marker-based crop model simulations showed the need to optimize the genotype depending on sowing date, particularly in high risk environments. An empirical validation of the approach showed that it holds good promises to improve frost and heat stress avoidance.

2021 ◽  
Author(s):  
Clemens Schwingshackl ◽  
Anne Sophie Daloz ◽  
Carley Iles ◽  
Nina Schuhen ◽  
Jana Sillmann

<p>Cities are hotspots of human heat stress due to their large number of inhabitants and the urban heat island effect leading to amplified temperatures. Exposure to heat stress in urban areas is projected to further increase in the future, mainly due to climate change and expected increases in the number of people living in cities. The impacts of climate change in cities have been investigated in numerous studies, but rarely using climate models due to their coarse spatial resolution compared to the typical areal extent of cities. Recent advances in regional climate modelling now give access to an ensemble of high-resolution simulations for Europe, allowing for much more detailed analyses of small-scale features, such as city climate.</p><p>Focusing on Europe, we compare the evolution of several heat stress indicators for 36 major European cities, based on regional climate model simulations from EURO-CORDEX. The applied EURO-CORDEX ensemble (Vautard et al., 2020) has a spatial resolution of 0.11° (~11 km; comparable to the extent of large cities) and contains over 60 ensemble members, allowing thus for robust multi-model analyses of climate change on city levels. We analyze changes in heat stress both relative to the climatological heat stress variability in each city during 1981-2010 using the Heat Wave Magnitude Index daily (HWMId, Russo et al., 2015) and in absolute terms by counting the yearly number of exceedances of impact-relevant thresholds. Relative and absolute heat stress increase throughout Europe but with distinct patterns. Absolute heat stress increases predominantly in Southern Europe, primarily due to the hotter climate in the South. Relative changes are also highest in Southern Europe but exhibit a secondary maximum in Northern Europe, while being lowest in Central Europe. The main reason for this pattern is that day-to-day variability in heat stress indicators during present climate conditions is highest in Central Europe but lower in Southern and Northern Europe. Large Northern European cities, which are all located at the shore, are further influenced by different heat stress evolutions over land and sea surfaces.</p><p>As human vulnerability does not only depend on the absolute heat stress but also on what people are adapted to (i.e., the climatological range), the results of this study highlight that cities in all parts of Europe – including in Northern Europe – must prepare for higher heat stress in the future.</p><p> </p><p>References:</p><p>Russo, S., et al. (2015). Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environmental Research Letters, 10(12). doi:10.1088/1748-9326/10/12/124003</p><p>Vautard, R., et al. (2020). Evaluation of the large EURO‐CORDEX regional climate model ensemble. Journal of Geophysical Research: Atmospheres. doi:10.1029/2019jd032344</p>


2020 ◽  
Vol 24 (3) ◽  
pp. 119-134
Author(s):  
Ibrahim Alhindawi ◽  
Carlos Jimenez-Bescos

AbstractWith the higher pace of climate change, temperatures are rising each year, resulting in various effects on the thermal status of buildings. This paper takes the opportunity of analysing different scenarios of greenhouse gas (GHG) emissions using hourly weather data of future projections by implementing EPW weather files on EnergyPlus software dynamic simulations, coupled with architectural science methods of climate analysis, to test the effect of high and medium-high emission scenarios for the 2050s and 2080s future timelines on thermal comfort range, passive zones potential, and heating/cooling periods, as compared to the weather data from 2003–2017. Simulations results have shown a remarkable effect on the scale of daily cooling hours and monthly coverage under the high GHG emission scenario, expanding its range by 60 %, with 6 hours on summer peak days and 3 months/year, as well as an annual decrease in heating period by 33.3 %. Thermal comfort zones of tested periods have also witnessed an alternation, translating the effect on the passive cooling and passive heating zones’ way of variating, where the ranges are pushed towards their potential limits. Results have also demonstrated that if future weather data is not included in simulations, a weather-related performance gap is generated.


2018 ◽  
Vol 69 (8) ◽  
pp. 821 ◽  
Author(s):  
Chenyao Yang ◽  
Helder Fraga ◽  
Wim van Ieperen ◽  
João A. Santos

Climate change projections for Portugal showed warming and drying trends, representing a substantial threat for the sustainability of forage production in perennial grassland. The objective of the present study was to assess climate change impacts on seasonal dry matter yield (DMY) in three locations (North-west-, Central-inner and South-Portugal) with different climatic conditions, for two grassland production systems deviating in growing season length, either early cuts in spring (ES) or late cuts in summer (LS). Impacts were estimated using the STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) crop model, by comparing a historical baseline period (1985–2006) with simulated projections over future periods (2021–2080). For this purpose, the STICS crop model was driven by high-resolution climate data from a coupled Global Climate Model/Regional Climate Model chain. As a result, we obtained that, during the baseline period, DMY of LS was consistently much higher than that of ES in all three locations. For LS, significant reductions in mean DMY were forecasted during 2061–2080, ranging from mild (–13%) in the north to severe (–31%) in the south of Portugal. In contrast, seasonal DMY was largely maintained for ES among sites until 2080, benefiting from low water deficits, the expected atmospheric CO2 rise and the forecasted temperature increase during cool season. Thus, the yield gap was projected to gradually decrease between the two regimes, in which mean DMY for ES was foreseen to exceed that of LS over 2061–2080 in the southern site. Moreover, ES was projected to have very low exposure to extreme heat and severe water stresses. Conversely, LS, subjected to high summer water deficit and irrigation needs, was projected to experience increased summertime water stress (9–11%) and drastically increased heat stress (33–57%) in 2061–2080, with more pronounced heat stress occurring in the south. Frequency of occurrence of extreme heat stress was projected to gradually increase in summer over successive study periods, with a concomitant increased intensity of DMY response to inter-annual variability of heat stress during 2061–2080. Heat stress tended to be more important than water stress under the prescribed irrigation strategy for LS, potentially being the main limiting factor for summertime DMY production under climate change scenario.


Author(s):  
Traoré Amadou ◽  
Falconnier Gatien N ◽  
Kouressy Mamoutou ◽  
Serpantié Georges ◽  
BA Alassane ◽  
...  

AbstractAdaptation of the agricultural sector to climate change is crucial to avoid food insecurity in sub-Saharan Africa. Farmers’ perception of climate change is a crucial element in adaptation process. The aim of this study was (i) to compare farmers’ perception of climate change with actual weather data recorded in central Mali and (ii) to identify changes in agricultural practices implemented by farmers to adapt to climate change and iii) to investigate the link between farmers’ perception of climate change and implementation of adaptation practices. Focus group discussions and individual surveys were conducted to identify climate-related changes perceived by farmers and agricultural adaptation strategies they consider relevant to cope with these changes. Majority (>50%) of farmers perceived an increase in temperature, decrease in rainfall, shortening of growing season, early cessation of rainfall and increase in the frequency of dry spells at beginning of growing season. In line with farmers’ perception, analysis of climate data indicated (i) increase in mean annual temperature and minimum growing season temperature and (ii) decrease in total rainfall. Farmers’ perception of early cessation of rainfall and more frequent drought periods were not detected by climate data analysis. To cope with decrease in rainfall and late start of growing season, farmers used drought-tolerant cultivars and implemented water-saving technologies. Despite a perceived warming, no specific adaptation to heat stress was mentioned 30 by farmers. Our study high-lights the need for a dialogue between farmers and researchers to develop new strategies to compensate for the expected negative impacts of heat stress on agricultural productivity.


1999 ◽  
Vol 19 ◽  
pp. 3 ◽  
Author(s):  
Renwick ◽  
Katzfey ◽  
McGregor ◽  
Nguyen

2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Hatem Mahmoud ◽  
Ayman Ragab

The density of building blocks and insufficient greenery in cities tend to contribute dramatically not only to increased heat stress in the built environment but also to higher energy demand for cooling. Urban planners should, therefore, be conscious of their responsibility to reduce energy usage of buildings along with improving outdoor thermal efficiency. This study examines the impact of numerous proposed urban geometry cases on the thermal efficiency of outer spaces as well as the energy consumption of adjacent buildings under various climate change scenarios as representative concentration pathways (RCP) 4.5 and 8.5 climate projections for New Aswan city in 2035. The investigation was performed at one of the most underutilized outdoor spaces on the new campus of Aswan University in New Aswan city. The potential reduction of heat stress was investigated so as to improve the thermal comfort of the investigated outdoor spaces, as well as energy savings based on the proposed strategies. Accordingly, the most appropriate scenario to be adopted to cope with the inevitable climate change was identified. The proposed scenarios were divided into four categories of parameters. In the first category, shelters partially (25–50% and 75%) covering the streets were used. The second category proposed dividing the space parallel or perpendicular to the existing buildings. The third category was a hybrid scenario of the first and second categories. In the fourth category, a green cover of grass was added. A coupling evaluation was applied utilizing ENVI-met v4.2 and Design-Builder v4.5 to measure and improve the thermal efficiency of the outdoor space and reduce the cooling energy. The results demonstrated that it is better to cover outdoor spaces with 50% of the overall area than transform outdoor spaces into canyons.


2012 ◽  
Vol 92 (3) ◽  
pp. 421-425 ◽  
Author(s):  
Hong Wang ◽  
Yong He ◽  
Budong Qian ◽  
Brian McConkey ◽  
Herb Cutforth ◽  
...  

Wang, H., He, Y., Qian, B., McConkey, B., Cutforth, H., McCaig, T., McLeod, G., Zentner, R., DePauw, R., Lemke, R., Brandt, K., Liu, T., Qin, X., White, J., Hunt, T. and Hoogenboom, G. 2012. Short Communication: Climate change and biofuel wheat: A case study of southern Saskatchewan. Can. J. Plant Sci. 92: 421–425. This study assessed potential impacts of climate change on wheat production as a biofuel crop in southern Saskatchewan, Canada. The Decision Support System for Agrotechnology Transfer-Cropping System Model (DSSAT-CSM) was used to simulate biomass and grain yield under three climate change scenarios (CGCM3 with the forcing scenarios of IPCC SRES A1B, A2 and B1) in the 2050s. Synthetic 300-yr weather data were generated by the AAFC stochastic weather generator for the baseline period (1961–1990) and each scenario. Compared with the baseline, precipitation is projected to increase in every month under all three scenarios except in July and August and in June for A2, when it is projected to decrease. Annual mean air temperature is projected to increase by 3.2, 3.6 and 2.7°C for A1B, A2 and B1, respectively. The model predicted increases in biomass by 28, 12 and 16% without the direct effect of CO2 and 74, 55 and 41% with combined effects (climate and CO2) for A1B, A2 and B1, respectively. Similar increases were found for grain yield. However, the occurrence of heat shock (>32°C) will increase during grain filling under the projected climate conditions and could cause severe yield reduction, which was not simulated by DSSAT-CSM. This implies that the future yield under climate scenarios might have been overestimated by DSSAT-CSM; therefore, model modification is required. Several measures, such as early seeding, must be taken to avoid heat damages and take the advantage of projected increases in temperature and precipitation in the early season.


2015 ◽  
Vol 127 (3-4) ◽  
pp. 573-585 ◽  
Author(s):  
G. Duveiller ◽  
M. Donatelli ◽  
D. Fumagalli ◽  
A. Zucchini ◽  
R. Nelson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document