Kidneys and chronic renal disease

Author(s):  
Hugh Devlin ◽  
Rebecca Craven

Kidneys and chronic renal disease in relation to dentistry is the topic of this chapter. The chapter starts with the structure and function of the kidneys. The functions of acid-base balance and electrolyte balance are described. Chronic renal disease/failure (CRD/CRF) is then considered in terms of its impact on drug metabolism and excretion, anaemia, and bone pathology. Finally, the bleeding tendency associated with chronic renal failure is discussed, together with its clinical implications.

PEDIATRICS ◽  
1977 ◽  
Vol 59 (5) ◽  
pp. 794-794
Author(s):  
Lester F. Soyka

The endocrinology section of Duncan's Diseases of Metabolism comprises 736 pages, or about 44% of the total text. The division of this seventh edition of a classic text in the field is perhaps a logical expression of the splitting of endocrinology from metabolism as each field has grown tremendously in the past decade. The endocrinology portion is compact and easy to use because of this division, aided by the employment of thin, though substantial paper and small, but easily readable type. These combine to avoid the feeling of consulting a big-city telephone directory, which is so common with use of many of the standard textbooks of today. The illustrations are generally excellent and the 54-page index, which covers both sections of the book, is unusually thorough. As in all textbooks, many sections are outdated before they appear in print. Although the editors, Philip K. Bondy and Leon E. Rosenberg, propose to avoid this by means of a "last-minute" addendum, only two of the 13 chapters bear such, and one of these lists only three references, all dating to 1972. The other recent-developments section is longer and more helpful. The content is essentially that of general clinical endocrinology, each chapter using the standard approach of considering normal structure and function and then diseases in a gland arrangement, starting with the hypothalamus and traveling downward to the testis and ovary. A small chapter on acid-base balance seems out of place, whereas those on nonendocrine-secreting tumors and serotonin and the carcinoid syndrome are useful extensions of the scope of endocrinology.


1977 ◽  
Vol 232 (1) ◽  
pp. R10-R17 ◽  
Author(s):  
R. G. DeLaney ◽  
S. Lahiri ◽  
R. Hamilton ◽  
P. Fishman

Upon entering into aestivation, Protopterus aethiopicus develops a respiratory acidosis. A slow compensatory increase in plasma bicarbonate suffices only to partially restore arterial pH toward normal. The cessation of water intake from the start of aestivation results in hemoconcentration and marked oliguria. The concentrations of most plasma constituents continue to increase progressively, and the electrolyte ratios change. The increase in urea concentration is disproportionately high for the degree of dehydration and constitutes an increasing fraction of total plasma osmolality. Acid-base and electrolyte balance do not reach a new equilibrium within 1 yr in the cocoon.


Physiology ◽  
2017 ◽  
Vol 32 (5) ◽  
pp. 367-379 ◽  
Author(s):  
Julian L. Seifter ◽  
Hsin-Yun Chang

Clinical assessment of acid-base disorders depends on measurements made in the blood, part of the extracellular compartment. Yet much of the metabolic importance of these disorders concerns intracellular events. Intracellular and interstitial compartment acid-base balance is complex and heterogeneous. This review considers the determinants of the extracellular fluid pH related to the ion transport processes at the interface of cells and the interstitial fluid, and between epithelial cells lining the transcellular contents of the gastrointestinal and urinary tracts that open to the external environment. The generation of acid-base disorders and the associated disruption of electrolyte balance are considered in the context of these membrane transporters. This review suggests a process of internal and external balance for pH regulation, similar to that of potassium. The role of secretory gastrointestinal epithelia and renal epithelia with respect to normal pH homeostasis and clinical disorders are considered. Electroneutrality of electrolytes in the ECF is discussed in the context of reciprocal changes in Cl−or non Cl−anions and [Formula: see text].


Author(s):  
Gertrude Arthur ◽  
Jeffrey L. Osborn ◽  
Frederique B. Yiannikouris

Prorenin receptor (PRR), a 350-amino acid receptor initially thought of as a receptor for the binding of renin and prorenin has been shown to be multifunctional. In addition to its role in the renin angiotensin system (RAS), PRR also transduces several intracellular signaling molecules and is a component of the vacuolar H+-ATPase that participates in autophagy. PRR is found in the kidney and particularly in great abundance in the cortical collecting duct. In the kidney, PRR participates in water and salt balance, acid-base balance, autophagy and plays a role in development and progression of hypertension, diabetic retinopathy, and kidney fibrosis. This review highlights the role of PRR in the development and function of the kidney namely the macula densa, podocyte, proximal and distal convoluted tubule and the principal cells of the collecting duct and focuses on PRR function in body fluid volume homeostasis, blood pressure regulation and acid-base balance. This review also explores new advances in the molecular mechanism involving PRR in normal renal health and pathophysiological states.


Author(s):  
Joanna Kamińska ◽  
Tomasz Podgórski ◽  
Jakub Kryściak ◽  
Maciej Pawlak

This study assesses the status of hydration and the acid-base balance in female handball players in the Polish Second League before and after simulated matches in both indoor (hall) and beach (outdoor) conditions. The values of biochemical indicators useful for describing water-electrolyte management, such as osmolality, hematocrit, aldosterone, sodium, potassium, calcium, chloride and magnesium, were determined in the players’ fingertip capillary blood. Furthermore, the blood parameters of the acid-base balance were analysed, including pH, standard base excess, lactate and bicarbonate ion concentration. Additionally, the pH and specific gravity of the players’ urine were determined. The level of significance was set at p < 0.05. It was found that both indoor and beach simulated matches caused post-exercise changes in the biochemical profiles of the players’ blood and urine in terms of water-electrolyte and acid-base balance. Interestingly, the location of a simulated match (indoors vs. beach) had a statistically significant effect on only two of the parameters measured post-exercise: concentration of calcium ions (lower indoors) and urine pH (lower on the beach). A single simulated game, regardless of its location, directly affected the acid-base balance and, to a smaller extent, the water-electrolyte balance, depending mostly on the time spent physically active during the match.


This chapter covers common metabolic disorders, principally disorders of glucose control, acid–base balance, and electrolyte balance. The nursing assessment and management of thyroid and adrenal gland emergencies are also covered.


2018 ◽  
Vol 48 (10) ◽  
Author(s):  
Dóris Pereira Halfen ◽  
Alexandre de Mello Kessler ◽  
Luciano Trevizan ◽  
Juliana Toloi Jeremias ◽  
Thiago Henrique Annibale Vendramini ◽  
...  

ABSTRACT: Urolithiasis is a common disorder in the veterinary clinic and is considered as one of the most frequently cause of morbidity. This disorder is closely associated with urinary pH and nutrition plays a key role in the control of this disease, because through dietary manipulation it is possible to modify the urinary pH. Sulfur is considered macroelement with a strong influence on the acid-base status and may be crucial to control urinary pH in cats. The purpose of this study was to evaluate the effects of addition of different sources of sulfur (S) in the diet of cats on the urinary parameters and acid-base balance. Forty-two healthy adult cats were divided into 3 groups, and each group of 14 cats received 7 diets in a complete randomized block design. Calcium sulfate (CaSO4), DL-methionine (DLM) and methionine hydroxy analog (MHA) were added to a control diet in two levels (1.28g S/kg and 2.56g S/kg) to formulate 6 other experimental diets. The acid-base balance was evaluated by hemogasometry in samples of venous blood. The DLM at the highest level and MHA differed of the control diet in relation to urinary pH (P<0.05). Calcium sulfate; although, not differentiated from the control diet, has been shown to alter urinary pH despite its zero electrolyte balance. Apparently, the alkalizing effect of calcium was not sufficient to avoid sulfate acidification of the urine. Treatments showed no alteration of the acid-base balance of the animals and no affect the consumption of the diets.


Author(s):  
A.O. Phillips ◽  
Steve Riley

The kidney is responsible for control of water, electrolyte (particularly sodium and potassium), and acid–base balance and for excretion of metabolic wastes, and it has important functions as an endocrine organ, including key roles in renin, vitamin D, and erythropoietin production or metabolism. The nephron—beginning at the glomerulus, the functional unit of the kidney is the nephron, through which glomerular filtrate passes to be finally excreted as urine. The nephron is divided into anatomically and functionally distinct sections that work together to maintain homeostasis....


Sign in / Sign up

Export Citation Format

Share Document