Photosensitivity

Author(s):  
Jane McGregor

Normal human skin is photosensitive in that it reddens following acute sunlight exposure and tans and thickens following chronic sunlight exposure. Skin cancer, particularly nonmelanoma skin cancer, is also a consequence of high cumulative sun exposure in genetically predisposed normal individuals (predominantly those with fair skin)....

2020 ◽  
pp. 5688-5694
Author(s):  
Hiva Fassihi ◽  
Jane McGregor

Normal human skin is photosensitive in that it reddens following acute sunlight exposure and tans and thickens following chronic sunlight exposure. Skin cancer, particularly non-melanoma skin cancer, is also a consequence of high cumulative sun exposure in genetically predisposed normal individuals (predominantly those with fair skin). Outside the range of normal photosensitivity, there are several conditions in which patients exhibit diverse abnormal cutaneous reactions to sunlight. These are broadly described together as the photosensitivity disorders, but in fact they comprise a very heterogeneous group of skin conditions. Abnormal cutaneous photosensitive responses range from easy sunburn (as in drug phototoxicity and the DNA repair photodermatoses) and pain (erythropoietic protoporphyria), through to complex inflammatory responses such as urticaria, eczema, or epidermal necrosis induced by specific wavelengths of sunlight, the so-called idiopathic photodermatoses.


2020 ◽  
Vol 41 (Supplement_1) ◽  
pp. S78-S79
Author(s):  
Dorothy M Supp ◽  
Jennifer M Hahn ◽  
Christopher M Lloyd ◽  
Kelly A Combs ◽  
Viki B Swope ◽  
...  

Abstract Introduction Engineered skin substitutes (ESS) were developed to meet the need for prompt wound closure in patients with large full thickness burns. ESS containing autologous fibroblasts and keratinocytes were shown to provide stable wound closure in burn patients, but are limited by hypopigmentation. DNA damage caused by ultraviolet (UV) radiation is a known risk factor for development of skin cancer. In normal human skin, epidermal melanocytes provide pigmentation, helping to shield skin from UV-induced DNA damage. The current study investigated inclusion of human melanocytes (hM) and their role in the response of ESS to UV light in vivo. Methods Primary cells were isolated from skin of healthy de-identified human donors with IRB approval. Three groups of ESS were prepared with fibroblasts and keratinocytes, +/- hM, and were grafted orthotopically to immunodeficient mice: ESS without hM; ESS with light skin-derived (Caucasian) hM (ESS+hML); and ESS with dark skin-derived (African American) hM (ESS+hMD). After 8 weeks in vivo, grafts were irradiated with 135 mJ/cm2 UV, and mice were euthanized after 2 or 24 hours; non-UV treated mice served as controls. Pigmentation and erythema were measured with a Mexameter. Melanocytes and cyclobutane pyrimidine dimers (CPDs) were quantified by immunostaining with anti-TYRP1 and anti-CPD antibodies, respectively, followed by image analysis (Nikon Elements). Statistical analyses (SigmaPlot) utilized t-test or one-way ANOVA; P< 0.05 was considered significant. Results At 8 weeks post-grafting, mean hM density in ESS+hML and ESS+hMD was not significantly different from normal human skin samples. Pigmentation (in Mexameter units) before UV irradiation was significantly different among groups (ESS+hMD > ESS+hML > ESS no hM). UV irradiation did not increase erythema in any group, but resulted in significantly increased pigmentation in ESS+hML and ESS+hMD at 2 hours, but not 24 hours, post-UV. CPDs, the most prevalent form of UV-induced DNA damage, were significantly elevated 24 hours post-UV in ESS without hM. DNA damage was significantly lower 24 hours post-UV in ESS+hML and ESS+hMD compared with ESS without hM. No differences in DNA damage were observed between ESS+hML and ESS+hMD. Conclusions Pigmentation of ESS+hML and ESS+hMD in vivo varied according to the skin phototype of the hM donor, with no difference in melanocyte density, which was similar to normal human skin. Inclusion of either light or dark hM decreased UV-induced DNA damage, suggesting that hM in ESS play a photoprotective role, as in normal human skin. Applicability of Research to Practice Protection against UV-induced DNA damage may reduce the risk of skin cancer in patients grafted with ESS containing melanocytes.


Author(s):  
Jessica Tang ◽  
Eleanor Fewings ◽  
Darwin Chang ◽  
Hanlin Zeng ◽  
Shanshan Liu ◽  
...  

AbstractEvery cell in the human body has a unique set of somatic mutations, yet it remains difficult to comprehensively genotype an individual cell. Here, we developed solutions to overcome this obstacle in the context of normal human skin, thus offering the first glimpse into the genomic landscapes of individual melanocytes from human skin. We comprehensively genotyped 133 melanocytes from 19 sites across 6 donors. As expected, sun-shielded melanocytes had fewer mutations than sun-exposed melanocytes. However, within sun-exposed sites, melanocytes on chronically sun-exposed skin (e.g. the face) displayed a lower mutation burden than melanocytes on intermittently sun-exposed skin (e.g. the back). Melanocytes located adjacent to a skin cancer had higher mutation burdens than melanocytes from donors without skin cancer, implying that the mutation burden of normal skin can be harnessed to measure cumulative sun damage and skin cancer risk. Moreover, melanocytes from healthy skin commonly harbor pathogenic mutations, likely explaining the origins of the melanomas that arise in the absence of a pre-existing nevus. Phylogenetic analyses identified groups of related melanocytes, suggesting that melanocytes spread throughout skin as fields of clonally related cells, invisible to the naked eye. Overall, our study offers an unprecedented view into the genomic landscapes of individual melanocytes, revealing key insights into the causes and origins of melanoma.


1984 ◽  
Vol 12 (2) ◽  
pp. 89-97
Author(s):  
Graham R. Elliott ◽  
H.E. Amos ◽  
James W. Bridges

The rate of growth of normal human skin fibroblasts was inhibited in a dose related, reversible, fashion by practolol (N-4-(2-hydroxy)-3 (1-methyl)-aminopropoxyphenylacetamine) (ID50 1.35 ± 0.14 x 10-3M), propranolol (1-(isopropylamino)-3(1-naphthyl-oxy)-2-propranolol) (ID50 0.145 ± 0.02 x 10-3M) and paracetamol (N-(4-hydroxyphenyl) acetamide) (ID50 0.85 ± 0.2 x 10-3M). Skin fibroblasts isolated from a psoriasis patient were more sensitive towards practolol (ID50 0.48 ± 0.14 x 10-3M) and propranolol (ID50 0.032 ± 0.002 x 10-3M), but less sensitive towards paracetamol (ID50 1.3 ± 0.07 x 10-3M). In vitro generated metabolites of practolol, using normal or Arochlor 1254-pretreated hamster liver preparations, and structural analogues of practolol had no effect upon the growth of either cell type.


1987 ◽  
Vol 117 (4) ◽  
pp. 419-428 ◽  
Author(s):  
C.R. LOVELL ◽  
K.A. SMOLENSKI ◽  
V.C. DUANCE ◽  
N.D. LIGHT ◽  
S. YOUNG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document