Functional Connectivity: Application to Developmental Disorders

Author(s):  
Luke Bloy ◽  
Ragini Verma ◽  
Timothy P.L. Roberts

Noninvasive imaging and electrophysiological methods have been developed to facilitate the in vivo investigation of brain function and dysfunction. Such methods have been employed, with great success, to the functional mapping of the brain, as well as the characterization of the temporal activity of these regions during a variety of tasks and experimental conditions. These methods are however inadequate to fully capture our current understanding of brain activity, as the complex interplay of structurally and functionally connected networks of neuronal ensembles. Here we offer an overview of the methodological advancements that have been made to better facilitate the investigation of connectivity in the brain and its relationship to development and pathology. We have focused primarily on in vivo modalities that have been most widely adopted, namely fMRI and electro/magneto encephalography for the investigation of functional connectivity and diffusion MRI for structural connectivity. Finally, the application of these methodologies to the study of neurodevelopmental disorders, such as the autism spectrum disorders, schizophrenia and attention deficit hyperactivity disorder, is presented.

2021 ◽  
Author(s):  
SUBBA REDDY OOTA ◽  
Archi Yadav ◽  
Arpita Dash ◽  
Surampudi Bapi Raju ◽  
Avinash Sharma

Over the last decade, there has been growing interest in learning the mapping from structural connectivity (SC) to functional connectivity (FC) of the brain. The spontaneous fluctuations of the brain activity during the resting-state as captured by functional MRI (rsfMRI) contain rich non-stationary dynamics over a relatively fixed structural connectome. Among the modeling approaches, graph diffusion-based methods with single and multiple diffusion kernels approximating static or dynamic functional connectivity have shown promise in predicting the FC given the SC. However, these methods are computationally expensive, not scalable, and fail to capture the complex dynamics underlying the whole process. Recently, deep learning methods such as GraphHeat networks along with graph diffusion have been shown to handle complex relational structures while preserving global information. In this paper, we propose a novel attention-based fusion of multiple GraphHeat networks (A-GHN) for mapping SC-FC. A-GHN enables us to model multiple heat kernel diffusion over the brain graph for approximating the complex Reaction Diffusion phenomenon. We argue that the proposed deep learning method overcomes the scalability and computational inefficiency issues but can still learn the SC-FC mapping successfully. Training and testing were done using the rsfMRI data of 100 participants from the human connectome project (HCP), and the results establish the viability of the proposed model. Furthermore, experiments demonstrate that A-GHN outperforms the existing methods in learning the complex nature of human brain function.


2020 ◽  
Author(s):  
Vanessa Siffredi ◽  
Maria G Preti ◽  
Valeria Kebets ◽  
Silvia Obertino ◽  
Richard J Leventer ◽  
...  

Abstract The corpus callosum is the largest white matter pathway in the brain connecting the two hemispheres. In the context of developmental absence (agenesis) of the corpus callosum (AgCC), a proposed candidate for neuroplastic response is strengthening of intrahemispheric pathways. To test this hypothesis, we assessed structural and functional connectivity in a uniquely large cohort of children with AgCC (n = 20) compared with typically developing controls (TDC, n = 29), and then examined associations with neurobehavioral outcomes using a multivariate data-driven approach (partial least squares correlation, PLSC). For structural connectivity, children with AgCC showed a significant increase in intrahemispheric connectivity in addition to a significant decrease in interhemispheric connectivity compared with TDC, in line with the aforementioned hypothesis. In contrast, for functional connectivity, children with AgCC and TDC showed a similar pattern of intrahemispheric and interhemispheric connectivity. In conclusion, we observed structural strengthening of intrahemispheric pathways in children born without corpus callosum, which seems to allow for functional connectivity comparable to a typically developing brain, and were relevant to explain neurobehavioral outcomes in this population. This neuroplasticity might be relevant to other disorders of axonal guidance, and developmental disorders in which corpus callosum alteration is observed.


Author(s):  
V. A. Maksimenko ◽  
A. A. Harchenko ◽  
A. Lüttjohann

Introduction: Now the great interest in studying the brain activity based on detection of oscillatory patterns on the recorded data of electrical neuronal activity (electroencephalograms) is associated with the possibility of developing brain-computer interfaces. Braincomputer interfaces are based on the real-time detection of characteristic patterns on electroencephalograms and their transformation  into commands for controlling external devices. One of the important areas of the brain-computer interfaces application is the control of the pathological activity of the brain. This is in demand for epilepsy patients, who do not respond to drug treatment.Purpose: A technique for detecting the characteristic patterns of neural activity preceding the occurrence of epileptic seizures.Results:Using multi-channel electroencephalograms, we consider the dynamics of thalamo-cortical brain network, preceded the occurrence of an epileptic seizure. We have developed technique which allows to predict the occurrence of an epileptic seizure. The technique has been implemented in a brain-computer interface, which has been tested in-vivo on the animal model of absence epilepsy.Practical relevance:The results of our study demonstrate the possibility of epileptic seizures prediction based on multichannel electroencephalograms. The obtained results can be used in the development of neurointerfaces for the prediction and prevention of seizures of various types of epilepsy in humans. 


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 566
Author(s):  
Jae-Geun Lee ◽  
Hyun-Ju Cho ◽  
Yun-Mi Jeong ◽  
Jeong-Soo Lee

The microbiota–gut–brain axis (MGBA) is a bidirectional signaling pathway mediating the interaction of the microbiota, the intestine, and the central nervous system. While the MGBA plays a pivotal role in normal development and physiology of the nervous and gastrointestinal system of the host, its dysfunction has been strongly implicated in neurological disorders, where intestinal dysbiosis and derived metabolites cause barrier permeability defects and elicit local inflammation of the gastrointestinal tract, concomitant with increased pro-inflammatory cytokines, mobilization and infiltration of immune cells into the brain, and the dysregulated activation of the vagus nerve, culminating in neuroinflammation and neuronal dysfunction of the brain and behavioral abnormalities. In this topical review, we summarize recent findings in human and animal models regarding the roles of the MGBA in physiological and neuropathological conditions, and discuss the molecular, genetic, and neurobehavioral characteristics of zebrafish as an animal model to study the MGBA. The exploitation of zebrafish as an amenable genetic model combined with in vivo imaging capabilities and gnotobiotic approaches at the whole organism level may reveal novel mechanistic insights into microbiota–gut–brain interactions, especially in the context of neurological disorders such as autism spectrum disorder and Alzheimer’s disease.


2017 ◽  
Vol 24 (3) ◽  
pp. 277-293 ◽  
Author(s):  
Selen Atasoy ◽  
Gustavo Deco ◽  
Morten L. Kringelbach ◽  
Joel Pearson

A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at “rest.” Here, we introduce the concept of harmonic brain modes—fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.


2020 ◽  
pp. 1-21
Author(s):  
Alexandra Anagnostopoulou ◽  
Charis Styliadis ◽  
Panagiotis Kartsidis ◽  
Evangelia Romanopoulou ◽  
Vasiliki Zilidou ◽  
...  

Understanding the neuroplastic capacity of people with Down syndrome (PwDS) can potentially reveal the causal relationship between aberrant brain organization and phenotypic characteristics. We used resting-state EEG recordings to identify how a neuroplasticity-triggering training protocol relates to changes in the functional connectivity of the brain’s intrinsic cortical networks. Brain activity of 12 PwDS before and after a 10-week protocol of combined physical and cognitive training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychosomatometric assessments. PwDS showed increased connectivity within the left hemisphere and from left-to-right hemisphere, as well as increased physical and cognitive performance. Our findings reveal a strong adaptive neuroplastic reorganization as a result of the training that leads to a less-random network with a more pronounced hierarchical organization. Our results go beyond previous findings by indicating a transition to a healthier, more efficient, and flexible network architecture, with improved integration and segregation abilities in the brain of PwDS. Resting-state electrophysiological brain activity is used here for the first time to display meaningful relationships to underlying Down syndrome processes and outcomes of importance in a translational inquiry. This trial is registered with ClinicalTrials.gov Identifier NCT04390321.


2019 ◽  
Author(s):  
Milou Straathof ◽  
Michel R.T. Sinke ◽  
Theresia J.M. Roelofs ◽  
Erwin L.A. Blezer ◽  
R. Angela Sarabdjitsingh ◽  
...  

AbstractAn improved understanding of the structure-function relationship in the brain is necessary to know to what degree structural connectivity underpins abnormal functional connectivity seen in many disorders. We integrated high-field resting-state fMRI-based functional connectivity with high-resolution macro-scale diffusion-based and meso-scale neuronal tracer-based structural connectivity, to obtain an accurate depiction of the structure-function relationship in the rat brain. Our main goal was to identify to what extent structural and functional connectivity strengths are correlated, macro- and meso-scopically, across the cortex. Correlation analyses revealed a positive correspondence between functional connectivity and macro-scale diffusion-based structural connectivity, but no correspondence between functional connectivity and meso-scale neuronal tracer-based structural connectivity. Locally, strong functional connectivity was found in two well-known resting-state networks: the sensorimotor and default mode network. Strong functional connectivity within these networks coincided with strong short-range intrahemispheric structural connectivity, but with weak heterotopic interhemispheric and long-range intrahemispheric structural connectivity. Our study indicates the importance of combining measures of connectivity at distinct hierarchical levels to accurately determine connectivity across networks in the healthy and diseased brain. Distinct structure-function relationships across the brain can explain the organization of networks and may underlie variations in the impact of structural damage on functional networks and behavior.


2018 ◽  
Author(s):  
Dayo O. Adewole ◽  
Laura A. Struzyna ◽  
James P. Harris ◽  
Ashley D. Nemes ◽  
Justin C. Burrell ◽  
...  

AbstractAchievements in intracortical neural interfaces are compromised by limitations in specificity and long-term performance. A biological intermediary between devices and the brain may offer improved specificity and longevity through natural synaptic integration with deep neural circuitry, while being accessible on the brain surface for optical read-out/control. Accordingly, we have developed the first “living electrodes” comprised of implantable axonal tracts protected within soft hydrogel cylinders for the biologically-mediated monitoring/modulation of brain activity. Here we demonstrate the controlled fabrication, rapid axonal outgrowth, reproducible cytoarchitecture, and simultaneous optical stimulation and recording of neuronal activity within these engineered constructs in vitro. We also present their transplantation, survival, integration, and optical recording in rat cortex in vivo as a proof-of-concept for this neural interface paradigm. The creation and functional validation of these preformed, axon-based “living electrodes” is a critical step towards developing a new class of biohybrid neural interfaces to probe and modulate native circuitry.


Author(s):  
S. Vidhusha ◽  
A. Kavitha

Autism spectrum disorders are connected with disturbances of neural connectivity. Functional connectivity is typically examined during a cognitive task, but also exists in the absence of a task. While a number of studies have performed functional connectivity analysis to differentiate controls and autism individuals, this work focuses on analyzing the brain activation patterns not only between controls and autistic subjects, but also analyses the brain behaviour present within autism spectrum. This can bring out more intuitive ways to understand that autism individuals differ individually. This has been performed between autism group relative to the control group using inter-hemispherical analysis. Indications of under connectivity were exhibited by the Granger Causality (GC) and Conditional Granger Causality (CGC) in autistic group. Results show that as connectivity decreases, the GC and CGC values also get decreased. Further, to demark the differences present within the spectrum of autistic individuals, GC and CGC values have been calculated.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jay W. Reddy ◽  
Maya Lassiter ◽  
Maysamreza Chamanzar

Abstract Targeted light delivery into biological tissue is needed in applications such as optogenetic stimulation of the brain and in vivo functional or structural imaging of tissue. These applications require very compact, soft, and flexible implants that minimize damage to the tissue. Here, we demonstrate a novel implantable photonic platform based on a high-density, flexible array of ultracompact (30 μm × 5 μm), low-loss (3.2 dB/cm at λ = 680 nm, 4.1 dB/cm at λ = 633 nm, 4.9 dB/cm at λ = 532 nm, 6.1 dB/cm at λ = 450 nm) optical waveguides composed of biocompatible polymers Parylene C and polydimethylsiloxane (PDMS). This photonic platform features unique embedded input/output micromirrors that redirect light from the waveguides perpendicularly to the surface of the array for localized, patterned illumination in tissue. This architecture enables the design of a fully flexible, compact integrated photonic system for applications such as in vivo chronic optogenetic stimulation of brain activity.


Sign in / Sign up

Export Citation Format

Share Document