scholarly journals The evolution of gamma-ray burst jet opening angle through cosmic time

2020 ◽  
Vol 494 (3) ◽  
pp. 4371-4381 ◽  
Author(s):  
Nicole Lloyd-Ronning ◽  
Valeria U Hurtado ◽  
Aycin Aykutalp ◽  
Jarrett Johnson ◽  
Chiara Ceccobello

ABSTRACT Jet opening angles of long gamma-ray bursts (lGRBs) appear to evolve in cosmic time, with lGRBs at higher redshifts being on average more narrowly beamed than those at lower redshifts. We examine the nature of this anticorrelation in the context of collimation by the progenitor stellar envelope. First, we show that the data indicate a strong correlation between gamma-ray luminosity and jet opening angle, and suggest this is a natural selection effect – only the most luminous GRBs are able to successfully launch jets with large opening angles. Then, by considering progenitor properties expected to evolve through cosmic time, we show that denser stars lead to more collimated jets; we argue that the apparent anticorrelation between opening angle and redshift can be accounted for if lGRB massive star progenitors at high redshifts have higher average density compared to those at lower redshifts. This may be viable for an evolving initial mass function (IMF) – under the assumption that average density scales directly with mass, this relationship is consistent with the form of the IMF mass evolution suggested in the literature. The jet angle–redshift anticorrelation may also be explained if the lGRB progenitor population is dominated by massive stars at high redshift, while lower redshift lGRBs allow for a greater diversity of progenitor systems (that may fail to collimate the jet as acutely). Overall, however, we find both the jet angle–redshift anticorrelation and jet angle–luminosity correlation are consistent with the conditions of jet launch through, and collimation by, the envelope of a massive star progenitor.

2012 ◽  
Vol 8 (S295) ◽  
pp. 272-281 ◽  
Author(s):  
Claudia Maraston

AbstractModelling stellar populations in galaxies is a key approach to gain knowledge on the still elusive process of galaxy formation as a function of cosmic time. In this review, after a summary of the state-of-art, I discuss three aspects of the modelling, that are particularly relevant to massive galaxies, the focus of this symposium, at low and high-redshift. These are the treatment of the Thermally-Pulsating Asymptotic Giant Branch phase, evidences of an unusual Initial Mass Function, and the effect of modern stellar libraries on the model spectral energy distribution.


2019 ◽  
Vol 489 (2) ◽  
pp. 1880-1898 ◽  
Author(s):  
Chong-Chong He ◽  
Massimo Ricotti ◽  
Sam Geen

ABSTRACT We present radiation-magneto-hydrodynamic simulations of star formation in self-gravitating, turbulent molecular clouds, modelling the formation of individual massive stars, including their UV radiation feedback. The set of simulations have cloud masses between mgas = 103 M⊙ and 3 × 105 M⊙ and gas densities typical of clouds in the local Universe ($\overline{n}_{\rm gas} \sim 1.8\times 10^2$ cm−3) and 10× and 100× denser, expected to exist in high-redshift galaxies. The main results are as follows. (i) The observed Salpeter power-law slope and normalization of the stellar initial mass function at the high-mass end can be reproduced if we assume that each star-forming gas clump (sink particle) fragments into stars producing on average a maximum stellar mass about $40{{\ \rm per\ cent}}$ of the mass of the sink particle, while the remaining $60{{\ \rm per\ cent}}$ is distributed into smaller mass stars. Assuming that the sinks fragment according to a power-law mass function flatter than Salpeter, with log-slope 0.8, satisfy this empirical prescription. (ii) The star formation law that best describes our set of simulation is ${\rm d}\rho _*/{\rm d}t \propto \rho _{\rm gas}^{1.5}$ if $\overline{n}_{\rm gas}\lt n_{\rm cri}\approx 10^3$ cm−3, and ${\rm d}\rho _*/{\rm d}t \propto \rho _{\rm gas}^{2.5}$ otherwise. The duration of the star formation episode is roughly six cloud’s sound crossing times (with cs = 10 km s−1). (iii) The total star formation efficiency in the cloud is $f_*=2{{\ \rm per\ cent}} (m_{\rm gas}/10^4~\mathrm{M}_\odot)^{0.4}(1+\overline{n}_{\rm gas}/n_{\rm cri})^{0.91}$, for gas at solar metallicity, while for metallicity Z < 0.1 Z⊙, based on our limited sample, f* is reduced by a factor of ∼5. (iv) The most compact and massive clouds appear to form globular cluster progenitors, in the sense that star clusters remain gravitationally bound after the gas has been expelled.


2015 ◽  
Vol 455 (1) ◽  
pp. 282-294 ◽  
Author(s):  
K Helgason ◽  
M Ricotti ◽  
A Kashlinsky ◽  
V Bromm

ABSTRACT The study of the cosmic near-infrared background (CIB) light after subtraction of resolved sources can push the limits of current observations and yield information on galaxies and quasars in the early universe. Spatial fluctuations of the CIB exhibit a clustering excess at angular scales ∼1° whose origin has not been conclusively identified, but disentangling the relative contribution from low- and high-redshift sources is not trivial. We explore the likelihood that this signal is dominated by emission from galaxies and accreting black holes (BHs) in the early Universe. We find that, the measured fluctuation signal is too large to be produced by galaxies at redshifts z > 8, which only contribute ∼0.01–0.05 nW m−2 sr−1 to the CIB. Additionally, if the first small mass galaxies have a normal initial mass function, the light of their ageing stars (fossils) integrated over cosmic time contributes a comparable amount to the CIB as their pre-reionization progenitors. In order to produce the observed level of CIB fluctuation without violating constraints from galaxy counts and the electron optical depth of the IGM, minihaloes at z > 12 must form preferably top-heavy stars with efficiency f* ≳ 0.1 and at the same time maintain a very low escape fraction of ionizing radiation, fesc < 0.1 per cent. If instead the CIB fluctuations are produced by high-z BHs, one requires vigorous accretion in the early universe reaching ρacc ≳ 105 M⊙ Mpc−3 by z ≃ 10. This growth must stop by z ∼ 6 and be significantly obscured not to overproduce the soft cosmic X-ray background and its observed coherence with the CIB. We therefore find the range of suitable high-z explanations to be narrow, but could possibly be widened by including additional physics and evolution at those epochs.


2000 ◽  
Vol 543 (2) ◽  
pp. 799-821 ◽  
Author(s):  
Shin‐ichiro Okumura ◽  
Atsushi Mori ◽  
Eiji Nishihara ◽  
Etsuji Watanabe ◽  
Takuya Yamashita

2020 ◽  
Vol 494 (2) ◽  
pp. 2355-2373 ◽  
Author(s):  
M Palla ◽  
F Calura ◽  
F Matteucci ◽  
X L Fan ◽  
F Vincenzo ◽  
...  

ABSTRACT We study the effects of the integrated galactic initial mass function (IGIMF) and dust evolution on the abundance patterns of high redshift starburst galaxies. In our chemical models, the rapid collapse of gas clouds triggers an intense and rapid star formation episode, which lasts until the onset of a galactic wind, powered by the thermal energy injected by stellar winds and supernova explosions. Our models follow the evolution of several chemical elements (C, N, α-elements, and Fe) both in the gas and dust phases. We test different values of β, the slope of the embedded cluster mass function for the IGIMF, where lower β values imply a more top-heavy initial mass function (IMF). The computed abundances are compared to high-quality abundance measurements obtained in lensed galaxies and from composite spectra in large samples of star-forming galaxies in the redshift range 2 ≲ z ≲ 3. The adoption of the IGIMF causes a sensible increase of the rate of star formation with respect to a standard Salpeter IMF, with a strong impact on chemical evolution. We find that in order to reproduce the observed abundance patterns in these galaxies, either we need a very top-heavy IGIMF (β &lt; 2) or large amounts of dust. In particular, if dust is important, the IGIMF should have β ≥ 2, which means an IMF slightly more top-heavy than the Salpeter one. The evolution of the dust mass with time for galaxies of different mass and IMF is also computed, highlighting that the dust amount increases with a top-heavier IGIMF.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 197-198
Author(s):  
Andrew J. Bunker

AbstractI discuss stellar populations in galaxies at high redshift (z > 6), in particular the blue rest-frame UV colours which have been detected in recent years through near-IR imaging with HST. These spectral slopes of β < −2 are much more blue than star-forming galaxies at lower redshift, and may suggest less dust obscuration, lower metallicity or perhaps a different initial mass function. I describe current work on the luminosity function of high redshift star- forming galaxies, the evolution of the fraction of strong Lyman-α emitters in this population, and the contribution of the ionizing photon budget from such galaxies towards the reionization of the Universe. I also describe constraints placed by Spitzer/IRAC on stellar populations in galaxies within the first billion years, and look towards future developments in spectroscopy with Extremely Large Telescopes and the James Webb Space Telescope, including the JWST/NIRSpec GTO programme on galaxy evolution at high redshift.


2019 ◽  
Vol 15 (S352) ◽  
pp. 234-238
Author(s):  
Donatella Romano ◽  
Zhi-Yu Zhang ◽  
Francesca Matteucci ◽  
Rob J. Ivison ◽  
Padelis P. Papadopoulos

AbstractDetermining the shape of the stellar initial mass function (IMF) and whether it is constant or varies in space and time is the Holy Grail of modern astrophysics, with profound implications for all theories of star and galaxy formation. On a theoretical ground, the extreme conditions for star formation (SF) encountered in the most powerful starbursts in the Universe are expected to favour the formation of massive stars. Direct methods of IMF determination, however, cannot probe such systems, because of the severe dust obscuration affecting their starlight. The next best option is to observe CNO bearing molecules in the interstellar medium at millimetre/ submillimetre wavelengths, which, in principle, provides the best indirect evidence for IMF variations. In this contribution, we present our recent findings on this issue. First, we reassess the roles of different types of stars in the production of CNO isotopes. Then, we calibrate a proprietary chemical evolution code using Milky Way data from the literature, and extend it to discuss extragalactic data. We show that, though significant uncertainties still hamper our knowledge of the evolution of CNO isotopes in galaxies, compelling evidence for an IMF skewed towards high-mass stars can be found for galaxy-wide starbursts. In particular, we analyse a sample of submillimetre galaxies observed by us with the Atacama Large Millimetre Array at the peak of the SF activity of the Universe, for which we measure 13C/18O⋍1. This isotope ratio is especially sensitive to IMF variations, and is little affected by observational uncertainties. At the end, ongoing developments of our work are briefly outlined.


2019 ◽  
Vol 492 (2) ◽  
pp. 1706-1712
Author(s):  
Anton Vikaeus ◽  
Erik Zackrisson ◽  
Christian Binggeli

ABSTRACT The upcoming James Webb Space Telescope (JWST) will allow observations of high-redshift galaxies at fainter detection levels than ever before, and JWST surveys targeting gravitationally lensed fields are expected to bring z ≳ 6 objects with very low star formation rate (SFR) within reach of spectroscopic studies. As galaxies at lower and lower star formation activity are brought into view, many of the standard methods used in the analysis of integrated galaxy spectra are at some point bound to break down, due to violation of the assumptions of a well-sampled stellar initial mass function (IMF) and a slowly varying SFR. We argue that galaxies with SFR ∼ 0.1 M⊙ yr−1 are likely to turn up at the spectroscopic detection limit of JWST in lensed fields, and investigate to what extent star formation sampling may affect the spectral analysis of such objects. We use the slug spectral synthesis code to demonstrate that such effects are likely to have significant impacts on spectral diagnostics of, for example, the Balmer emission lines. These effects are found to stem primarily from SFRs varying rapidly on short (∼Myr) time-scales due to star formation in finite units (star clusters), whereas the effects of an undersampled IMF is deemed insignificant in comparison. In contrast, the ratio between the He ii- and H i-ionizing flux is found to be sensitive to IMF-sampling as well as ICMF-sampling (sampling of the initial cluster mass function), which may affect interpretations of galaxies containing Population III stars or other sources of hard ionizing radiation.


1999 ◽  
Vol 190 ◽  
pp. 237-238
Author(s):  
Joel Wm. Parker ◽  
Jesse K. Hill ◽  
Robert Cornett ◽  
Joan Hollis ◽  
Emily Zamkoff ◽  
...  

We present an analysis of wide-field, far-ultraviolet images of the LMC and SMC obtained by the Ultraviolet Imaging Telescope. The photometric catalog of over 37,000 stars allows us to make large-scale, statistical studies of massive star formation in OB associations and in the field population. Our results show that: (1) the most probable slope for the initial mass function (IMF) of field stars is Γ = −1.80, slightly steeper than the Salpeter slope; and (2) there doesn't seem to be a single, unique IMF slope for stars in OB associations, with a range of values from Γ = −1.0 to −2.0. We also analyze the stellar vs. diffuse UV flux, and the population of OB star candidates in the field.


Sign in / Sign up

Export Citation Format

Share Document