scholarly journals Confirmation of monoperiodicity above 20 s for two blue large-amplitude pulsators

2020 ◽  
Vol 496 (2) ◽  
pp. 1105-1114 ◽  
Author(s):  
Paul Ross McWhirter ◽  
Marco C Lam ◽  
Iain A Steele

ABSTRACT Blue large-amplitude pulsators (BLAPs) are a new class of pulsating variable stars. They are located close to the hot subdwarf branch in the Hertzsprung–Russell diagram and have spectral classes of late O or early B. Stellar evolution models indicate that these stars are likely radially pulsating, driven by iron group opacity in their interiors. A number of variable stars with a similar driving mechanism exist near the hot subdwarf branch with multiperiodic oscillations caused by either pressure (p) or gravity (g) modes. No multiperiodic signals were detected in the OGLE (Optical Gravitational Lensing Experiment) discovery light curves since it would be difficult to detect short-period signals associated with higher order p modes with the OGLE cadence. Using the RISE instrument on the Liverpool Telescope, we produced high-cadence light curves of two BLAPs, OGLE-BLAP-009 (mv = 15.65 mag) and OGLE-BLAP-014 (mv = 16.79 mag), using a 720 nm longpass filter. Frequency analysis of these light curves identifies a primary oscillation with a period of 31.935 ± 0.0098 min and an amplitude from a Fourier series fit of 0.236 mag for BLAP-009. The analysis of BLAP-014 identifies a period of 33.625 ± 0.0214 min and an amplitude of 0.225 mag. Analysis of the residual light curves reveals no additional short-period variability down to an amplitude of 15.20 ± 0.26 mmag for BLAP-009 and 58.60 ± 3.44 mmag for BLAP-014 for minimum periods of 20 and 60 s, respectively. These results further confirm that the BLAPs are monoperiodic.

2019 ◽  
Vol 629 ◽  
pp. A21 ◽  
Author(s):  
Dominic M. Bowman ◽  
Daniel L. Holdsworth

Context. Modern space telescopes are currently providing high-precision light curves for a large fraction of the sky, such that many new variable stars are being discovered. However, some stars have periodic variability with periods on the order of minutes and require high-cadence photometry to probe the physical mechanisms responsible. A cadence of less than a minute is often required to remove Nyquist ambiguities and confirm rapid variability, which forces observers to obtain high-cadence ground-based photometry. Aims. We aim to provide a modern software package to reduce ground-based photometric time series data and deliver optimised (differential) light curves. To produce high-quality light curves, which maximise the amplitude signal-to-noise ratio of short-period variability in a Fourier spectrum, we require adaptive elliptical aperture photometry as this represents a significant advantage compared to aperture photometry using circular apertures of fixed radii. Methods. The methodology of our code and its advantages are demonstrated using high-cadence ground-based photometry from the South African Astronomical Observatory (SAAO) of a confirmed rapidly oscillating Ap (roAp) star. Furthermore, we employed our software package to search for rapid oscillations in three candidate roAp stars. Results. We demonstrate that our pipeline represents a significant improvement in the quality of light curves, and we make it available to the community for use with different instruments and observatories. We search for and demonstrate the lack of high-frequency roAp pulsations to a limit of ∼1 mmag using B data in the three Ap stars HD 158596, HD 166542, and HD 181810. Conclusions. We demonstrate the significant improvement in the extraction of short-period variability caused by high-frequency pulsation modes, and discuss the implication of null detections in three Ap stars.


2018 ◽  
Vol 620 ◽  
pp. L9 ◽  
Author(s):  
G. Ramsay

Blue large-amplitude pulsators (BLAPs) are blue stars emitting high-amplitude (> 0.2 mag) pulsations on a timescale of a few tens of minutes. Recently discovered using OGLE data, they form a new class of variable star and have inspired a number of investigations searching for the origin of their pulsations. This short study presents the Gaia DR2 data for ten BLAPs for which parallax measurements are available. We have dereddened their colours using Gaia DR2 data from the stars in their immediate field and find that six show absolute magnitude and intrinsic colour consistent with expectations, whilst four stars have a less certain classification. This work highlights the extra information that Gaia DR2 data can provide to help classify those variable stars for which moderate-resolution optical spectra are not currently available. We also show how Gaia DR2 can make searches for BLAPs in wide-field high-cadence surveys more systematic and robust.


2021 ◽  
Vol 502 (1) ◽  
pp. 1299-1311
Author(s):  
Heidi B Thiemann ◽  
Andrew J Norton ◽  
Hugh J Dickinson ◽  
Adam McMaster ◽  
Ulrich C Kolb

ABSTRACT We present the first analysis of results from the SuperWASP variable stars Zooniverse project, which is aiming to classify 1.6 million phase-folded light curves of candidate stellar variables observed by the SuperWASP all sky survey with periods detected in the SuperWASP periodicity catalogue. The resultant data set currently contains >1 million classifications corresponding to >500 000 object–period combinations, provided by citizen–scientist volunteers. Volunteer-classified light curves have ∼89 per cent accuracy for detached and semidetached eclipsing binaries, but only ∼9 per cent accuracy for rotationally modulated variables, based on known objects. We demonstrate that this Zooniverse project will be valuable for both population studies of individual variable types and the identification of stellar variables for follow-up. We present preliminary findings on various unique and extreme variables in this analysis, including long-period contact binaries and binaries near the short-period cut-off, and we identify 301 previously unknown binaries and pulsators. We are now in the process of developing a web portal to enable other researchers to access the outputs of the SuperWASP variable stars project.


2016 ◽  
Vol 12 (S325) ◽  
pp. 259-262
Author(s):  
Susana Eyheramendy ◽  
Felipe Elorrieta ◽  
Wilfredo Palma

AbstractThis paper discusses an autoregressive model for the analysis of irregularly observed time series. The properties of this model are studied and a maximum likelihood estimation procedure is proposed. The finite sample performance of this estimator is assessed by Monte Carlo simulations, showing accurate estimators. We implement this model to the residuals after fitting an harmonic model to light-curves from periodic variable stars from the Optical Gravitational Lensing Experiment (OGLE) and Hipparcos surveys, showing that the model can identify time dependency structure that remains in the residuals when, for example, the period of the light-curves was not properly estimated.


2004 ◽  
Vol 193 ◽  
pp. 75-82
Author(s):  
A. Udalski

AbstractWe present results of the search for pulsating variable stars in the Magellanic Cloud fields covering central parts of these galaxies. The data were collected during the second phase of the Optical Gravitational Lensing Experiment survey (OGLE-II) from 1997 to 2000. In total, several thousand pulsating stars (Cepheids, RR Lyr) were found in both Magellanic Clouds. The photometric data of all objects are available to the astronomical community from the OGLE Internet archive. We present basic properties of pulsating stars in the Magellanic Clouds including Period–Luminosity relations for Cepheids. We also discuss observational prospects for the pulsating star field in the ongoing third phase of the OGLE project (OGLE-III) which started in 2001.


2017 ◽  
Vol 14 (S339) ◽  
pp. 66-66
Author(s):  
F. Förster

AbstractSupernovae (SNe) are cosmic explosions which are usually represented in a small region of the luminosity–time-scale diagram when discussing the variable sky. However, there are different time-scales involved in the evolution of SNe that are not reflected by that representation. This talk reviewed some of the physical mechanisms driving the SN light-curve diversity, especially at early times. It then discussed our efforts in the astroinformatics laboratory at CMM and at MAS to discover very young SNe using large etendue telescopes such as Blanco/DECam; those efforts led to the real-time discovery of more than one hundred SNe, some of them very young, under the High cadence Transient Survey (HiTS). We showed that, by comparing hydrodynamical models in the literature with HiTS SNe using Markov Chain Monte Carlo to sample from the posterior in a Bayesian approach, we can constrain the physical parameters that are driving the early time-evolution of these events. We also discussed how these data are being used for different projects, such as the discovery of asteroids and variable stars, and for testing different machine-learning algorithms in an interdisciplinary approach.


2015 ◽  
Vol 2 (1) ◽  
pp. 71-75 ◽  
Author(s):  
P. A. Mason ◽  
A. G. Zhilkin ◽  
D. V. Bisikalo ◽  
S. Gomez ◽  
J. Morales ◽  
...  

We present new broad band optical photometry of two magnetic cataclysmic variable stars, the asynchronous polar BY Camelopardalis and the short period polar FL Ceti. Observations were obtained at the 2.1-m Otto Struve Telescope of McDonald Observatory with 3s and 1s integration times respectively. In an attempt to understand the observed complex changes in accretion flow geometry observed in BY Cam, we performed full 3D MHD simulations assuming a variety of white dwarf magnetic field structures. We investigate fields with increasing complexity including both aligned and non-aligned dipole plus quadrupole field components. We compare model predictions with photometry at various phases of the beat cycle and find that synthetic light curves derived from a multipolar field structure are broadly consistent with optical photometry. FL Ceti is observed to have two very small accretion regions at the foot-points of the white dwarf’s magnetic field. Both accretion regions are visible at the same time in the high state and are about 100 degrees apart. MHD modeling using a dipole plus quadrupole field structure yields quite similar accretion regions as those observed in FL Ceti. We conclude that accretion flows calculated from MHD modeling of multi-polar magnetic fields produce synthetic light curves consistent with photometry of these magnetic cataclysmic variables.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259735
Author(s):  
Víctor Muñoz ◽  
N. Elizabeth Garcés

We study the light curves of pulsating variable stars using a complex network approach to build visibility graphs. We consider various types of variables stars (e.g., Cepheids, δ Scuti, RR Lyrae), build two types of graphs (the normal visibility graph (VG) and the horizontal visibility graph (HVG)), and calculate various metrics for the resulting networks. We find that all networks have a power-law degree distribution for the VG and an exponential distribution for the HVG, suggesting that it is a universal feature, regardless of the pulsation features. Metrics such as the average degree, the clustering coefficient and the transitivity coefficient, can distinguish between some star types. We also observe that the results are not strongly affected by the presence of observation gaps in the light curves. These findings suggest that the visibility graph algorithm may be a useful technique to study variability in stars.


1992 ◽  
Vol 9 ◽  
pp. 422-422
Author(s):  
D. Barthes ◽  
H. Boughaleb ◽  
F. Figueras ◽  
E. G. Foster ◽  
J. A. Mattei ◽  
...  

AbstractAmong the long period variable stars included in the Hipparcos observing program, 245 large-amplitude ones require brightness predictions during the mission in order to allocate the necessary observing time. We present the computation of the light ephemerides with numeric and symbolic methods using AAVSO’s 75-year data on maxima and minima dates and magnitudes and 20 years of individuai observations; the evaluation and revision of the ephemerides using ground-based observations compiled monthly by the AAVSO from observers world-wide and real-time monitoring of ephemerides stars from satellite observations performed at ESOC; the statistical results derived from one-and-a-half years of simultaneous ground-based and Hipparcos observations. We show the usefulness of all this work in understanding the physics of these pulsating variable stars.


Sign in / Sign up

Export Citation Format

Share Document