The High-Cadence Transient Survey (HiTS): Early Supernova Light-Curves

2017 ◽  
Vol 14 (S339) ◽  
pp. 66-66
Author(s):  
F. Förster

AbstractSupernovae (SNe) are cosmic explosions which are usually represented in a small region of the luminosity–time-scale diagram when discussing the variable sky. However, there are different time-scales involved in the evolution of SNe that are not reflected by that representation. This talk reviewed some of the physical mechanisms driving the SN light-curve diversity, especially at early times. It then discussed our efforts in the astroinformatics laboratory at CMM and at MAS to discover very young SNe using large etendue telescopes such as Blanco/DECam; those efforts led to the real-time discovery of more than one hundred SNe, some of them very young, under the High cadence Transient Survey (HiTS). We showed that, by comparing hydrodynamical models in the literature with HiTS SNe using Markov Chain Monte Carlo to sample from the posterior in a Bayesian approach, we can constrain the physical parameters that are driving the early time-evolution of these events. We also discussed how these data are being used for different projects, such as the discovery of asteroids and variable stars, and for testing different machine-learning algorithms in an interdisciplinary approach.

2021 ◽  
Vol 3 (4) ◽  
pp. 32-37
Author(s):  
J. Adassuriya ◽  
J. A. N. S. S. Jayasinghe ◽  
K. P. S. C. Jayaratne

Machine learning algorithms play an impressive role in modern technology and address automation problems in many fields as these techniques can be used to identify features with high sensitivity, which humans or other programming techniques aren’t capable of detecting. In addition, the growth of the availability of the data demands the need of faster, accurate, and more reliable automating methods of extracting information, reforming, and preprocessing, and analyzing them in the world of science. The development of machine learning techniques to automate complex manual programs is a time relevant research in astrophysics as it’s a field where, experts are dealing with large sets of data every day. In this study, an automated classification was built for 6 types of star classes Beta Cephei, Delta Scuti, Gamma Doradus, Red Giants, RR Lyrae and RV Tarui with widely varying properties, features extracted from training dataset of stellar light curves obtained from Kepler mission. The Random Forest classification model was used as the Machine Learning model and both periodic and non-periodic features extracted from light curves were used as the inputs to the model. Our implementation achieved an accuracy of 86.5%, an average precision level of 0.86, an average recall value of 0.87, and average F1-Score of 0.86 for the testing dataset obtained from the Kepler mission.


2019 ◽  
Vol 629 ◽  
pp. A21 ◽  
Author(s):  
Dominic M. Bowman ◽  
Daniel L. Holdsworth

Context. Modern space telescopes are currently providing high-precision light curves for a large fraction of the sky, such that many new variable stars are being discovered. However, some stars have periodic variability with periods on the order of minutes and require high-cadence photometry to probe the physical mechanisms responsible. A cadence of less than a minute is often required to remove Nyquist ambiguities and confirm rapid variability, which forces observers to obtain high-cadence ground-based photometry. Aims. We aim to provide a modern software package to reduce ground-based photometric time series data and deliver optimised (differential) light curves. To produce high-quality light curves, which maximise the amplitude signal-to-noise ratio of short-period variability in a Fourier spectrum, we require adaptive elliptical aperture photometry as this represents a significant advantage compared to aperture photometry using circular apertures of fixed radii. Methods. The methodology of our code and its advantages are demonstrated using high-cadence ground-based photometry from the South African Astronomical Observatory (SAAO) of a confirmed rapidly oscillating Ap (roAp) star. Furthermore, we employed our software package to search for rapid oscillations in three candidate roAp stars. Results. We demonstrate that our pipeline represents a significant improvement in the quality of light curves, and we make it available to the community for use with different instruments and observatories. We search for and demonstrate the lack of high-frequency roAp pulsations to a limit of ∼1 mmag using B data in the three Ap stars HD 158596, HD 166542, and HD 181810. Conclusions. We demonstrate the significant improvement in the extraction of short-period variability caused by high-frequency pulsation modes, and discuss the implication of null detections in three Ap stars.


2020 ◽  
Vol 496 (2) ◽  
pp. 1105-1114 ◽  
Author(s):  
Paul Ross McWhirter ◽  
Marco C Lam ◽  
Iain A Steele

ABSTRACT Blue large-amplitude pulsators (BLAPs) are a new class of pulsating variable stars. They are located close to the hot subdwarf branch in the Hertzsprung–Russell diagram and have spectral classes of late O or early B. Stellar evolution models indicate that these stars are likely radially pulsating, driven by iron group opacity in their interiors. A number of variable stars with a similar driving mechanism exist near the hot subdwarf branch with multiperiodic oscillations caused by either pressure (p) or gravity (g) modes. No multiperiodic signals were detected in the OGLE (Optical Gravitational Lensing Experiment) discovery light curves since it would be difficult to detect short-period signals associated with higher order p modes with the OGLE cadence. Using the RISE instrument on the Liverpool Telescope, we produced high-cadence light curves of two BLAPs, OGLE-BLAP-009 (mv = 15.65 mag) and OGLE-BLAP-014 (mv = 16.79 mag), using a 720 nm longpass filter. Frequency analysis of these light curves identifies a primary oscillation with a period of 31.935 ± 0.0098 min and an amplitude from a Fourier series fit of 0.236 mag for BLAP-009. The analysis of BLAP-014 identifies a period of 33.625 ± 0.0214 min and an amplitude of 0.225 mag. Analysis of the residual light curves reveals no additional short-period variability down to an amplitude of 15.20 ± 0.26 mmag for BLAP-009 and 58.60 ± 3.44 mmag for BLAP-014 for minimum periods of 20 and 60 s, respectively. These results further confirm that the BLAPs are monoperiodic.


2020 ◽  
Vol 494 (2) ◽  
pp. 1735-1743
Author(s):  
Sedighe Sajadian ◽  
Richard Ignace

ABSTRACT In this paper, we study the microlensing of radially pulsating stars. It is possible to discern and characterize the properties of distant, faint pulsating stars using high-cadence microlensing observations. By combining the stellar variability period with microlensing, we can obtain the source distance, type and radius, and we can better determine the lens parameters. Considering the variations in the radius and surface temperature of radially pulsating stars periodically, their microlensing light curves can be obtained by multiplying the magnification factor with a variable finite size effect by the intrinsic brightness curves of the pulsing source. The variable finite size of the source due to pulsation can be significant for transit and single microlensing with caustic-crossing features. This type of deviation in the magnification factor is considerable when the ratio of the source radius to the projected lens–source distance is in the range of ρ⋆/u ∈ [0.4, 10] and when its duration is short and of the same order as the time of crossing the source radius. Other deviations due to variable source intensity and its area make coloured and periodic deviations, which are asymmetric with respect to the signs of the pulsation phase. The positive phase makes deviations with larger amplitude than the negative phase. These deviations dominate in filters with short wavelengths (e.g. the B band). The position of the magnification peaks in the microlensing of variable stars varies and this displacement differs in different filters.


2020 ◽  
Vol 493 (2) ◽  
pp. 1996-2014 ◽  
Author(s):  
D Deras ◽  
A Arellano Ferro ◽  
C Lázaro ◽  
I H Bustos Fierro ◽  
J H Calderón ◽  
...  

ABSTRACT We present an analysis of ${VI}$ CCD time-series photometry of globular cluster NGC 6712. Our main goal is to study the variable star population as indicators of the cluster mean physical parameters. We employed the Fourier decomposition of RR Lyrae light curves to confirm that ${}[\rm Fe/H]_{UVES} = -1.0 \pm 0.05$ is a solid estimate. We estimated the reddening to the cluster as E(B − V) = 0.35 ± 0.04 from the RRab stars colour curves. The distance to the cluster was estimated using three independent methods which yielded a weighted mean distance <d > = 8.1 ± 0.2 kpc. The distribution of RRab and RRc stars on the horizontal branch shows a clear segregation around the first overtone red edge of the instability strip, which seems to be a common feature in OoI-type cluster with a very red horizontal branch. We carried out a membership analysis of 60 447 stars in our field of view (FoV) using the data from Gaia-DR2 and found 1529 likely members; we possess the light curves of 1100 among the member stars. This allowed us to produce a clean colour–magnitude diagram, consistent with an age of 12 Gyr, and enabled us to discover close unresolved contaminants for several variable stars. From the proper motion analysis, we found evidence of non-member stars in the FoV of the cluster being tidally affected by the gravitational pull of the bulge of the Galaxy. We found that the RRab variable V6, shows a previously undetected Blazhko effect. Finally, we report 16 new variables of the EW-type (9) and SR-type (7).


2012 ◽  
Vol 423 (2) ◽  
pp. 993-1005 ◽  
Author(s):  
J. Jurcsik ◽  
Á. Sódor ◽  
G. Hajdu ◽  
B. Szeidl ◽  
Á. Dózsa ◽  
...  

Abstract The analysis of recent, extended multicolour CCD and archive photoelectric, photographic and visual observations has revealed several important properties of RZ Lyr, an RRab-type variable exhibiting large-amplitude Blazhko modulation. On the time base of ∼110 yr, a strict anticorrelation between the pulsation- and modulation-period changes is established. The light curve of RZ Lyr shows a remarkable bump on the descending branch in the small-amplitude phase of the modulation, similarly to the light curves of bump Cepheids. We speculate that the stellar structure temporally suits a 4:1 resonance between the periods of the fundamental and one of the higher order radial modes in this modulation phase. The light-curve variation of RZ Lyr can be correctly fitted with a two-modulation-component solution; the 121-d period of the main modulation is nearly but not exactly four times longer than the period of the secondary modulation component. Using the inverse photometric method, the variations in the pulsation-averaged values of the physical parameters in different phases of both modulation components are determined.


2021 ◽  
Vol 502 (1) ◽  
pp. 1299-1311
Author(s):  
Heidi B Thiemann ◽  
Andrew J Norton ◽  
Hugh J Dickinson ◽  
Adam McMaster ◽  
Ulrich C Kolb

ABSTRACT We present the first analysis of results from the SuperWASP variable stars Zooniverse project, which is aiming to classify 1.6 million phase-folded light curves of candidate stellar variables observed by the SuperWASP all sky survey with periods detected in the SuperWASP periodicity catalogue. The resultant data set currently contains >1 million classifications corresponding to >500 000 object–period combinations, provided by citizen–scientist volunteers. Volunteer-classified light curves have ∼89 per cent accuracy for detached and semidetached eclipsing binaries, but only ∼9 per cent accuracy for rotationally modulated variables, based on known objects. We demonstrate that this Zooniverse project will be valuable for both population studies of individual variable types and the identification of stellar variables for follow-up. We present preliminary findings on various unique and extreme variables in this analysis, including long-period contact binaries and binaries near the short-period cut-off, and we identify 301 previously unknown binaries and pulsators. We are now in the process of developing a web portal to enable other researchers to access the outputs of the SuperWASP variable stars project.


2020 ◽  
Vol 29 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Fatemeh Davoudi ◽  
Atila Poro ◽  
Fahri Alicavus ◽  
Afshin Halavati ◽  
Saeed Doostmohammadi ◽  
...  

AbstractNew observations of the eclipsing binary system V1848 Ori were carried out using the V filter resulting in a determination of new times of minima and new ephemeris were obtained. We presented the first complete analysis of the system’s orbital period behavior and analysis of O-C diagram done by the GA and MCMC approaches in OCFit code. The O-C diagram demonstrates a sinusoidal trend in the data; this trend suggests a cyclic change caused by the LITE effect with a period of 10.57 years and an amplitude of 7.182 minutes. It appears that there is a third body with mass function of f (m3) = 0.0058 M⊙ in this binary system. The light curves were analyzed using the Wilson-Devinney code to determine some geometrical and physical parameters of the system. These results show that V1848 Ori is a contact W UMa binary system with the mass ratio of q = 0.76 and a weak fillout factor of 5.8%. The O’Connell effect was not seen in the light curve and there is no need to add spot.


2002 ◽  
Vol 1 (5) ◽  
pp. 319-327 ◽  
Author(s):  
M. P. Rols ◽  
M. Golzio ◽  
B. Gabriel ◽  
J. Teissié

Electric field pulses are a new approach for drug and gene delivery for cancer therapy. They induce a localized structural alteration of cell membranes. The associated physical mechanisms are well explained and can be safely controlled. A position dependent modulation of the membrane potential difference is induced when an electric field is applied to a cell. Electric field pulses with an overcritical intensity evoke a local membrane alteration. A free exchange of hydrophilic low molecular weight molecules takes place across the membrane. A leakage of cytosolic metabolites and a loading of polar drugs into the cytoplasm are obtained. The fraction of the cell surface which is competent for exchange is a function of the field intensity. The level of local exchange is strongly controlled by the pulse duration and the number of successive pulses. The permeabilised state is long lived. Its lifetime is under the control of the cumulated pulse duration. Cell viability can be preserved. Gene transfer is obtained but its mechanism is not a free diffusion. Plasmids are electrophoretically accumulated against the permeabilised cell surface and form aggregates due to the field effect. After the pulses, several steps follow: translocation to the cytoplasm, traffic to the nucleus and expression. Molecular structural and metabolic changes in cells remain mostly poorly understood. Nevertheless, while most studies were established on cells in culture ( in vitro), recent experiments show that similar effects are obtained on tissue ( in vivo). Transfer remains controlled by the physical parameters of the electrical treatment.


2016 ◽  
Vol 12 (S325) ◽  
pp. 259-262
Author(s):  
Susana Eyheramendy ◽  
Felipe Elorrieta ◽  
Wilfredo Palma

AbstractThis paper discusses an autoregressive model for the analysis of irregularly observed time series. The properties of this model are studied and a maximum likelihood estimation procedure is proposed. The finite sample performance of this estimator is assessed by Monte Carlo simulations, showing accurate estimators. We implement this model to the residuals after fitting an harmonic model to light-curves from periodic variable stars from the Optical Gravitational Lensing Experiment (OGLE) and Hipparcos surveys, showing that the model can identify time dependency structure that remains in the residuals when, for example, the period of the light-curves was not properly estimated.


Sign in / Sign up

Export Citation Format

Share Document